
7 2 ■ F E B R U A R Y 2 0 0 4 W W W . L I N U X J O U R N A L . C O M

S
o, you need to deploy a Private Branch eXchange
(PBX) system for your small office. Or, maybe you
want a voice-mail system running on your Linux
box at home. What about an interactive voice

response (IVR) system for home automation? Voice over IP
(VoIP) capabilities would be nice too. How do you do it? One
very interesting and powerful solution is Asterisk, a GPLed
PBX system built on Linux that bridges the gap between tradi-
tional telephony, such as your telephone line, and VoIP. Asterisk
also supports a host of other features that make it an attractive
solution. In this article, I touch on some of these features and
give you enough information to get started without having to
buy any special hardware.

Background

Asterisk is an open-source project sponsored by Digium. The
primary maintainer is Mark Spencer, but numerous patches
have been contributed from the community. As of this writing,
it runs only on Linux for Intel, although there was some suc-
cess in the past with Linux PPC, and an effort is underway to
port Asterisk to *BSD. Digium also sells various hardware
components that operate with Asterisk (see Resources). These
components are PCI cards that connect standard analog phone
lines to your computer. Other hardware is supported as well,
such as hardware from Dialogic and Quicknet. Asterisk has its
own VoIP protocol, called IAX, but it also supports SIP and
H.323. This leads us to one of Asterisk’s most powerful fea-

tures: its ability to connect different technologies within the
same feature-rich environment. For example, you could have
IAX, SIP, H.323 and a regular telephone line connecting
through Asterisk (see Figure 1—courtesy of Digium).

The developer can extend Asterisk by working with the C
API or by using AGIs, which are analogous to CGI scripts.
AGIs can be written in any language and are executed as an
external process. They are the easiest and most flexible way to
extend Asterisk’s capabilities (see Listing 1).

Getting Started

An official release hasn’t happened for quite a while, but there
is talk of one coming. Currently, the best way to get Asterisk is
by CVS:

■ I N D E P T H A S T E R I S K

Asterisk
Open-Source
PBX System
Use one system to manage voice over IP
and conventional phone lines, manage voice
mail and run CGI-like applications for phone
users.
B Y B R E TT S C H WA R Z

Figure 1. Asterisk can connect regular telephone lines and multiple VoIP standards.

Listing 1. Example Caller ID AGI Script

#!/bin/sh

\

exec tclsh "$0" ${1+"$@"}

set port 10000

set hosts [list 192.168.123.166 192.168.123.168]

##

Sends the info to the hosts

##

proc sendInfo {ip_ port_ callerid_} {

if {[catch {socket $ip_ $port_} sock]} {

return

}

fconfigure $sock -buffering line

puts $sock $callerid_

close $sock

return

}

##

We get all of the variables from stdin;

they start with "agi_"; and populate

an array with the values.

##

while {[gets stdin l] > 0} {

if {[regexp {̂ agi_([\w]+):[\s]+(.*)} $l -> k v]} {

set AGI($k) $v

}

}

##

Send the callerid info to each host

that we have listed

##

foreach H $hosts {

sendInfo $H $port $AGI(callerid)

}

export CVSROOT=\

:pserver:anoncvs@cvs.digium.com:/usr/cvsroot

cvs login (password is "anoncvs")

cvs co asterisk

If you plan on using a PCI card from Digium, you should look
at zaptel as well. If you plan on having connectivity, you need
to check out libpri.

There is no configure script, so you simply use make. You
also need readline, OpenSSL and Linux 2.4.x with the kernel
sources installed in order to compile Asterisk properly:

cd asterisk

make clean install samples

This compiles Asterisk, installs it and also installs the sample
configuration files. The last target overwrites any existing con-
figuration files, so either skip this target or back up any exist-
ing configuration files if you want to preserve them. If you are
using zaptel or ISDN, compile those before compiling Asterisk.
Asterisk is installed in /usr/sbin/ with the configuration files in
/etc/asterisk/ by default. Voice-mail messages are stored in
/var/spool/asterisk/voicemail/. CDRs for billing and log files
are located under /var/log/asterisk/.

You can start Asterisk by typing asterisk at the command
line. However, the best way to use Asterisk during the testing
phase is to run it with the -vvvc options. The -vvv option is
extra-verbose output, and the -c option gives you a console
prompt, which allows you to interact with the Asterisk process.
For example, you can submit commands to Asterisk, such as
management and status commands.

Asterisk’s operation and functionality relies on several
configuration files. We discuss three of them in this article,
but several others exist. Here, we set up Asterisk so that
users can call each other through IAX. We also set up
voice mail and give users a way to manage their voice-mail
messages.

The Dialplan

Before getting into the setup of Asterisk, we should have a
general understanding of the dialplan. It is flexible and pow-
erful but also can be confusing. The dialplan is used to
define number translations and routing and, therefore, is the
heart of Asterisk. The dialplan defines contexts, which are
containers for extensions (digit patterns) that provide specif-
ic functionality. For instance, you may want to provide a
context for people who are in your office or home, so that
they have certain dialing privileges. You also could set up an
external or guest context that allows only limited dialing
capabilities, such as no long distance. Context names are
enclosed by brackets ([]). The extensions associated with the
context follow the name.

Each extension can have several steps (priorities) associated
with it. The call flow continues sequentially unless an
application returns -1, the call is terminated or the application
redirects the call flow. The syntax of an extension entry looks
like this:

exten => <exten>,<priority>,<application(args)>

W W W . L I N U X J O U R N A L . C O M F E B R U A R Y 2 0 0 4 ■ 7 3

Below are a couple of examples:

exten => 9911,1,Wait(1)

exten => 9911,2,Dial(Zap/1/${EXTEN:1})

An extension is denoted by using exten =>. In this example,
9911 is the extension; 1 and 2 are the priorities or step numbers
(these need to be sequential); and Wait and Dial are the applica-
tions. Asterisk uses applications to process each step within an
extension. You can get help for the different applications from
the Asterisk console by typing show applications to list the sup-
ported applications and show application <application> to display
the help message.

Extension matching can be done on the dialed number as
well as the calling number. This allows for greater flexibility
when processing calls. Patterns also can be used, and these are
preceded with an underscore (_):

■ N—a single digit between 2 and 9.

■ X—a single digit between 0 and 9.

■ [12-4]—any digit within the brackets.

■ .—wild card.

For example, the extension _NXX5551212 would match any
information number, regardless of area code.

Extensions can be any alphanumeric string. Some special
characters are built-in:

■ s—start here when no dialed digits are received, as from an
incoming call from an analog line.

■ t—used when a timeout occurs.

■ i—used for invalid dialed digits.

■ o—operator extension.

■ h—hangup extension.

Creating IAX Users

The first file we create is the iax.conf file (see Listing 2). This
file controls the operation of the IAX protocol and defines
users of the protocol. The protocol has two versions. The old
one is IAX, and the new one is IAX2.

The first section of the configuration file is the general
section, which defines parameters for the IAX protocol. Four
parameters are listed, but others can be defined as well. The
port parameter is the port number over which IAX will
communicate. It defaults to 5036, so strictly speaking, that
entry is not needed. You can use the bindaddr parameter to tell
Asterisk to bind to a particular IP address—for machines with
multiple Ethernet cards. A bindaddr of 0.0.0.0 attempts to bind
to all IP addresses. The parameters amaflags and accountcode
are used for CDRs. When they are defined in the general section,
they are used as the default values. You also can define them
on a per-user basis. The values that amaflags can accept are
billing, documentation, omit and default. accountcode can be

an arbitrary value. For this setup, I use home for users local to
my LAN and external for users outside of my LAN. Several
other parameters have been omitted, but most of them are
performance parameters.

The remaining sections are user definitions. I have three
users: brett, maria and niko. The type definition has three pos-
sible values: a peer can receive calls, a user can place calls and
a friend can do both. I have defined all of them as type friend. I
defined all of the hosts as being dynamic, but if any host has a
static IP address, you can specify that instead. secret is the
password the user must provide when connecting to this
Asterisk server. Two contexts are used in this file for users:
[cg1] and [cg2]. I explain these in more detail when discussing
the extensions.conf file, but effectively, these contexts enable
the dialing privileges for the user.

Setting Up Voice Mail

The next file is voicemail.conf (Listing 3). Again, it has a gen-
eral section that deals with general or global parameters for
voice mail. The first parameter, format, lists the audio format
of the messages. The next two parameters are used for e-mail
notification: serveremail is the source e-mail address (from
field), and attach instructs Asterisk to attach the message to the
e-mail. In our example, we do not want the message attached.
Again, some parameters have been omitted.

<mbox> is the number used to save and access messages
for the user. This is also used in extensions.conf for directing
the call flow to the proper voice-mail box. The <passwd>
parameter is needed when checking messages. <name> is the

7 4 ■ F E B R U A R Y 2 0 0 4 W W W . L I N U X J O U R N A L . C O M

■ I N D E P T H A S T E R I S K

Listing 2. iax.conf File

[general]

port=5036

bindaddr=0.0.0.0

amaflags=default

accountcode=home

[brett]

type=friend

host=dynamic

secret=brettsecret

context=cg1

callerid="brett <111>"

[maria]

type=friend

host=dynamic

secret=mariasecret

context=cg1

callerid="maria <222>"

[niko]

type=friend

host=dynamic

secret=nikosecret

context=cg2

accountcode=external

callerid="Niko <333>"

name of the user. <email> and <pager> are e-mail addresses that
are used to send message notifications. The pager e-mail has a
shorter message, because it needs to be read on smaller devices
(pagers and cell phones). Many mobile and pager providers have
e-mail gateways that can deliver the message to the device.

Defining Extensions

The last file that we examine here is the extensions.conf file
(Listing 4). This is one of the most involved files because it
contains the dialplan. The dialplan in my example is rather
simple compared to its capabilities. This file has a general and
global section. The general section is similar to the general sec-
tion in the previous files; it defines general parameters. I don’t
define any general parameters in this example. The global sec-
tion is used to define global variables. These variables can be
accessed in the dialplan by using the syntax ${VARIABLE}. I
have defined one variable: TIMEOUT is the answer timeout.
Built-in variables also can be used within the dialplan, such as
CONTEXT, EXTEN and CALLERID.

All of the other sections are context definitions. A context is
simply a grouping of digit patterns. Here I have defined several
contexts that define dialing scenarios: voicemail, iax and after-
hours. Think of these as individual or mini-dialplans. I then
define two contexts that I assign to the users. These inherit the
capabilities of the other contexts I already have defined by
using the include keyword.

The first context, voicemail, lists the digit patterns that
allow users to access their voice-mail messages. Users can dial
6245, and the application VoicemailMain2 prompts them for
the mailbox number and password. Users then can manage
(listen to, delete and so on) the messages in their mailbox.

The iax context is used for PBX dialing between IAX users.
We have defined various extensions for each of the users. An
entry with the name of the user (maria) redirects to the exten-
sion number entry. For the 111 extension, I also match on
callerid. If the callerid matches, I change the callerid name so it
has a relative meaning. For example, if the extension dialed is
111, and the callerid is 222, the callerid name is changed to “it’s
your wife!”. This message shows up on my client whenever my
wife calls me (I won’t get into how I use this to my advantage).

The last digit pattern context is used for calls that arrive

during late hours. Because I don’t want to be disturbed at night
by external users, I match on any dialed number (_.). It waits
for one second and then answers the call. After it answers, it
plays a background message so the caller can choose for which
person to leave a message (“for brett, press 1”). So, if the caller
presses 1, the call proceeds to the 1,1,Voicemail2(111) entry,
which sends the user to the 111 mailbox. This is a simple illus-
tration of how you could construct an IVR system.

The [cg1] and [cg2] contexts include functionality I

7 6 ■ F E B R U A R Y 2 0 0 4 W W W . L I N U X J O U R N A L . C O M

■ I N D E P T H A S T E R I S K

Listing 3. voicemail.conf File

[general]

format=gsm|wav49|wav

serveremail=asterisk

attach=no

maxmessage=180

maxgreet=60

;

; Voicemail box definitions.

; mbox# => password,name,email,pager/mobile

;

[cg1]

111 => 1111,Brett,brett_schwarz@yahoo.com

222 => 2222,Maria,maria@foo.com,4255551212@mob.net

Listing 4. extensions.conf File

[globals]

TIMEOUT=12

[misc]

exten => t,1,PlayBack(timeout)

exten => t,2,Hangup()

exten => i,1,PlayBack(invalid)

exten => i,2,Hangup()

; voicemail management

[voicemail]

include => misc

exten => 6245,1,VoiceMailMain2()

exten => 6245,2,Hangup

[iax]

include => misc

exten => 111/222,1,SetCIDName("it´s your wife!")

exten => 111/222,2,agi(callerid.agi)

exten => 111/222,3,Dial(IAX/brett/s,${TIMEOUT})

exten => 111/222,4,Voicemail2(111)

exten => 111,1,agi(callerid.agi)

exten => 111,2,Dial(IAX/brett/s,${TIMEOUT})

exten => 111,3,Voicemail2(111)

exten => 222,1,Dial(IAX/maria/s,${TIMEOUT})

exten => 222,2,Voicemail2(222)

exten => maria,1,Goto(iax,222,1)

exten => 333,1,Dial(IAX/niko/s,${TIMEOUT})

[afterhours]

include => misc

exten => _.,1,Wait(1)

exten => _.,2,Answer

exten => _.,3,Background(vm-menu)

exten => 1,1,Voicemail2(111)

exten => 2,1,Voicemail2(222)

exten => 3,1,Voicemail2(333)

[cg1]

include => iax

include => voicemail

[cg2]

include => afterhours|1:00-6:00|*|*|*

include => iax

W W W . L I N U X J O U R N A L . C O M F E B R U A R Y 2 0 0 4 ■ 7 7

already have defined inside other con-
texts. This allows me to create different
user groups easily. For example, [cg1]
has all of the capabilities I have
defined, but [cg2] has only the iax
capabilities and gets directed to voice
mail during late hours. Powerful dial-
ing capabilities can be constructed by
utilizing the flexibility of Asterisk’s
dialplan. My example has shown only a
glimpse of the possibilities. You also
can simplify the dialplan by using
macros, but I leave that as an exercise
for the reader.

Using AGI

In the extensions.conf file, an entry
called callerid.agi calls an AGI script.
This is a simple example illustrating
the AGI interface. The script is placed
in the /var/lib/ asterisk/agi-bin/ directory
and is invoked by Asterisk as an exter-
nal process. AGI and Asterisk commu-
nicate through stdin, stdout and stderr.
Variables are passed in to the AGI
through stdin, and the AGI can pass
information back to Asterisk through
stdout. Messages destined for the
Asterisk console are written to stderr.
Two parameters always are passed to
the AGI: the full path to the AGI and
the arguments that are passed to the
AGI through the exten entry. The AGI
collects the callerid and sends it to a
GUI application running on another
machine. The GUI application can be
retrieved from my Web site (see Figure
2). AGI scripts also can be used to
retrieve information. If you need to
query a database for information about
the call or the user, you can use the
AGI interface as well.

Figure 2. A GUI application shows the caller ID infor-

mation for incoming calls.

Making a Call

So, what can we do now? After creat-
ing the configuration files above and
starting Asterisk (asterisk -vvvc), we
can try some calls. Currently, the
availability of IAX soft clients is lim-
ited. SIP soft clients, including
kphone and xten, and hard clients

from Cisco, SNOM and other vendors
also are available that will work with
Asterisk, but I concentrate on using
IAX in this article. Gnophone (Figure
3) is the oldest client and was devel-
oped by Digium. Work also is being
done on a cross-platform client, as
well as a Windows client. Another
client is available that belongs to the
tel Project at SourceForge. I have
modified the user interface to that

client (Figure 4). It is still alpha soft-
ware, but it’s functional. In fact, I
used this client to establish a call
between Germany (Reinhard Max),
Australia (Steve Landers) and the US
(me). Whichever client you choose,
you need to define your user name,
password and context for each
Asterisk server with which you want
to connect. Then, you can call anyone
defined in the iax.conf file (if the

dialplan is set up correctly). So, if I want to call my wife, I
simply dial 222, or I can type maria (because I have
defined this in the dialplan). If I want to check my voice-
mail messages, I can dial 6245.

Conclusion

I have touched on only a few of Asterisk’s capabilities, but this arti-
cle should give the reader a glimpse of Asterisk’s potential.
Asterisk scales well from small setups to larger and more complex
configurations. For example, Asterisk servers in different locations
can be connected through the IAX protocol, creating a virtual PBX.
Because Asterisk runs on Linux you can leverage existing tools to
help interface and manage Asterisk. For instance, you could have
Web access to the CDRs, configuration files and voice mail. In
fact, a CGI script comes with Asterisk that allows you to access
your voice-mail messages with a Web browser. I encourage readers
to explore Asterisk further and leverage its powerful features.

Acknowledgements

I would like to thank Digium, Reinhard Max and Steve
Landers for their assistance with this article.L

Brett Schwarz lives near Seattle, Washington, with
his wife, son and dog. Although he is familiar with
multiple platforms, his platform of choice is Linux.
He has many years of experience working on
both computer and telecom systems. He can be
contacted through his home page at www.bschwarz.com.

7 8 ■ F E B R U A R Y 2 0 0 4 W W W . L I N U X J O U R N A L . C O M

■ I N D E P T H A S T E R I S K

R E S O U R C E S

AGI Information: home.cogeco.ca/~camstuff/agi.html

“Asterisk: A Bare-Bones VoIP Example”, by John Todd (Asterisk

and SIP Setup):

www.onlamp.com/pub/a/onlamp/2003/07/03/asterisk.html

Asterisk Client: tel.sf.net

Asterisk Forum: www.pbxtech.info/forumdisplay.php?f=113

Asterisk HOWTO (Beta): megaglobal.net/docs/asterisk/html

Asterisk Wiki: www.voip-info.org/wiki-Asterisk

Brett’s Web Site: www.bschwarz.com

Cross-Platform IAX Client and IAXPhone: iaxclient.sf.net

Digium (Documentation and Hardware): www.digium.com

Getting Started with Asterisk: www.automated.it/guidetoasterisk.htm

Gnophone: www.gnophone.com

Notes on Asterisk: asterisk.drunkcoder.com

Perl Modules for Asterisk and Other Information: asterisk.gnuinter.net

Windows IAX Client: laser.com/dante/diax/diax.html

Figure 3. Digium’s Gnophone is a software phone client you can use with Asterisk.

Figure 4. Alpha but working software: a modified version of the client from the tel

Project.

