4

Quality of Service

4.1 Introduction: What is QoS?

Quality of service, or QoS, has been largely ignored in the initial design of IP networks.
IP, like other packet network technologies, was built and optimized to transport data files,
not voice or video. In this context, the only ‘quality of service’ that was required was
that the data should not be corrupted or get lost. Today the improvement of networking
technology makes it feasible to transport real-time data, such as voice or video, over an IP
network. Therefore, it becomes extremely important to be able to control and characterize
the QoS provided by an IP network.
Figure 4.1 summarizes the main parameters characterizing QoS in a packet network:

e The available capacity, also called ‘bandwidth’ in this context (peak, sustained).
e The end-to-end transmission delay (latency) and its variation (jitter).
e Packet loss and desequencing (older packets arriving first).

Bandwidth seems an easy issue to tackle ... just throw more leased line capacity at the
problem! In fact, there is more than just providing overall bandwidth: a provider must
also ensure that each user of the network gets a fair share of it. This is not a trivial
problem, and it is only recently that efficient fair sharing techniques have been deployed.

Latency is by far the most difficult issue of all. A common opinion is to say that IP
is simply unsuitable for the transport of latency-controlled data. This is not true. Parekh
and Gallager found a very useful approach in 1993, leading to a family of queuing algo-
rithms called ‘weighted fair queuing’. These algorithms, although difficult to implement
in practice, can guarantee an upper bound on latency for certain flows and enable IP to
provide the same guaranteed quality of service as ATM networks.

Jitter is important mainly in real-time applications that need to maintain worst-case
buffers to allow for timely delivery of the packets. If there is a lot of jitter, the jitter buffers
must be bigger and, therefore, introduce more delays in the end-to-end information path.

Beyond VolP Protocols: Understanding Voice Technology and Networking Techniques for IP Telephony
by O. Hersent, J.P. Petit, D. Gurle
Copyright ©12005 John Wiley & Sons, Ltd. ISBN: 0-470-02362-7

118 BEYOND VoIP PROTOCOLS

e Packet loss

¢ Transmission end-to-end delay: extremely important for

conversational services, heavily influences echo perception

Q) - =

‘Hi ! How are you ...

‘Hi ! How... @] <€—— HilHoware you ...

‘Hi, how are you ?’
o Jitter >
R I Y = I I I N
‘Hi, ho W are you?

Figure 4.1 Key factors influencing Qos in an IP network.

Packet loss is closely linked to the bandwidth issue and proper use of congestion control
at the edge of the network, and within the backbone. Packet loss usually occurs when
there is congestion on the packet’s path, causing router buffers to overflow. On TCP
connections, it will cause a significant drop in the connection’s throughput due to the Van
Jacobson algorithm. A loss of several packets may switch TCP in slow-start mode and
result in a slow connection long after the actual network congestion has stopped. On UDP
connections, packet loss will also cause delay (if an acknowledgment and retransmission
scheme or a forward error correction method is used) or quality degradation in multimedia
applications when loss cannot be recovered due to latency constraints.

Desequencing of packets is mainly influenced by the route stability of the network and
efficient queue management in routers with multiple interfaces for a given destination.
For most applications desequencing is not a problem per se and only causes the same
types of delays as jitter.

Telephony is not the only application that poses severe constraints on network QoS:
Transaction applications (round trip delays will slow the set-up time of all applications
using TCP and may in extreme cases slow the overall transmission speed), interactive
applications, such as simulations and games, and some protocol encapsulations, such as
SNA, in IP are also very sensitive to network QoS.

4.2 Describing a data stream

A data stream, or session, is a sequence of packets that can be grouped logically (e.g.,
packets coming from a given computer to another computer). In most applications that

QUALITY OF SERVICE 119

use UDP or TCP packets to communicate between two computers, the packets generated
by the application from one computer to the other computer all have the same source IP
address and port, and destination IP address and port (software engineers will remark that
these elements also characterize a connected ‘socket’). Therefore, these packet properties
characterize the group of packets that form the data stream specific to the application
session between the two computers.

Protocol, IP address, and port properties can be used to describe the data stream as a
group of packets (these properties are often called filters), but for QoS engineering it is
also important to characterize the timing properties of the sequence of packets: how often
a packet is sent, how regularly, etc.

The simplest metaphor that can be used to model a stream is called the fluid model.
In this model, packet stream granularity is ignored, just as if it was a continuous stream
of bits. A popular fluid model is the token bucket regulated stream (or leaky bucket)
model, as shown in Figure 4.2. The token bucket uses two parameters: the token bucket
size o (in bits) and the incoming traffic long-term average p (in bits/s).

The bits of the incoming traffic must remove a token from the bucket before being
forwarded to the output. To regenerate tokens, new ones are created every 1/p second
until the number of unused tokens stacked in the bucket reaches a depth of o tokens.
When, this limit is reached the bucket is full and the new tokens are rejected. Therefore,
o represents the size of the largest possible traffic bursts. At any point in time the total
volume of traffic that gets through the leaky bucket regulator is smaller than o + pt,
regardless of the profile of the traffic that has been presented at the input. The original
properties of incoming traffic have been ‘shaped’ and can now be represented by the o
and p parameters.

The token bucket model is widely used to represent the timing properties of a data
stream. It captures some of the burstiness characteristics of a stream, as well as the
stream’s average rate.

[] Token generator
L] |
Token ‘bucket’
(here maximum | T |
depth of five tokens) v
Bit buffer (waiting T
for token) T
T

Incoming bits

] Token 1 1]
[bucket
regulator \T| [T [T}

—

~ Outgoing bits

Figure 4.2 The token bucket model.

120 BEYOND VoIP PROTOCOLS

4.3 Queuing techniques for QoS

What causes so much trouble in a packet network is that, at each node, every packet can
be received and processed immediately, but it can be forwarded to the next hop only when
some capacity is available over the appropriate link. The delay between the reception and
the emission of a packet is therefore variable (this variation is called jitter): it can be
extremely long if the network is congested or if a very long packet is already being
emitted on the interface, or very short if the packet always finds available transmission
capacity along its forwarding path.

A simple way of reducing delays and jitter for a given packet stream is to prioritize
it over all others, but this is not an acceptable solution, as most networks are designed
to serve all users equally well. The notion of ‘fairness’ can have many interpretations.
The idea is that all flows should be given the same service or a service proportional to
their priority, with all flows with the same priority level treated equally. Depending on
the exact interpretation of what ‘fairness’ is, several queue management techniques can
be used by the nodes of the network. There has been many efforts to design a scheduling
policy that would minimize transmission delays while still giving each stream a fair
share of the available capacity. The scheduling policy decides, on each outgoing queue
corresponding to a transmission link, the order of the transmission of packets or eventually
their destruction, and seeks to approach for each traffic flow certain goals in terms of
capacity, jitter, latency, and packet loss through each node.

Several technologies exist, which can be grouped in two categories. The first category
only takes care of packet ordering in the output queues:

e FIFO (first in first out), also called first come first served (FCFS) simply outputs
the packets in the order in which they have been received.

e Class-based queuing (also called custom queuing by some router vendors).

e Fair queuing and weighted fair queuing algorithms. Here we will mainly present an
algorithm called PGPS (packet-generalized processor sharing), which is the reference
fair scheduling algorithm.

These techniques can be combined with any packet loss management technique of the
second category:

e Simple overflow.
e Random early detection (RED) and weighted random early detection (WRED).

4.3.1 Class-based queuing

Class-based queuing (CBQ) sorts data flows into several logical queues according to
filtering parameters (e.g., protocol). Arriving packets are sent to one of the appropriate
logical queues, and each separate queue works in FIFO mode. Each queue therefore
groups a ‘class’ of data streams.

QUALITY OF SERVICE 121

_TTTTTT >
_ [TITI

Figure 4.3 Class-based queuing.

Each queue is usually assigned a priority. A scheduler then picks candidate packets
from these logical queues according to the priority of the queue and forwards them to the
interface physical transmitter. A weighted round robin scheduler is shown in Figure 4.3. In
the example, the scheduler picks two packets (if there are more than two packets waiting
to be serviced) in the high-priority queue, then services one packet of the low-priority
queue, and this goes on until no packet is left to be serviced.

Class-based queuing is extremely useful. A common configuration is to prioritize UDP
(DNS, real-time applications) and interactive (TELNET) traffic. The sorting algorithm
can rely on the value of the TOS field (see Section 4.4.1) protocol identifier or sort the
packet according to a combination of source address, destination address, and port. It can
also be controlled by RSVP (see Section 4.4.2), especially to support the controlled load
mode of RSVP.

This is simple and efficient, but does not guarantee any delay to any flow. In addition,
since the algorithm is not sensitive to the size of packets, the instantaneous capacity
allocated to a given class may vary widely according to the size of packets in the queue
at that instant.

4.3.2 Simple fair queuing: bitwise round robin fair queuing algorithm

This algorithm is a refinement of CBQ which takes into account the size of packets. The
model of fairness that bitwise round robin fair queuing tries to emulate is a TDM (time
division multiplex) link. If each class of flow is allocated a virtual time slot on the TDM
link, the service will be equal between all classes. If some priority is needed, then one
class could be allocated two or more slots. To emulate TDM on an interface, each queue
keeps track of the total received byte count. Initially, all queues start with a byte count of
zero, then each arriving packet is assigned a tag with the value of the byte count of the
queue just after it arrived. Then the scheduler serves packets in the order of their tags.
As described above, TDM emulation will allocate the same capacity share to each flow
class. But it is simple to allocate different capacity shares (e.g., if queue 1 needs to be
configured to use 50% of the available capacity, queue 2 30% and queue 3 20%, then the
tags will not be the byte count, but the byte count divided by 5 for queue 1, divided by
3 for queue 2, and divided by 2 for queue 3).

This TDM model is quite good at allocating different shares of the capacity for each
queue in an interface, but it has a major flaw: classes not using capacity accumulate the
right to use this capacity later. A flow that has not sent data for a while could potentially
send a huge burst and be serviced immediately. During this time, even if other flows have
to send data, they will be blocked. In other words, the TDM model does not achieve
stream isolation.

122 BEYOND VoIP PROTOCOLS

It is possible to limit this effect by controlling the maximum amount of data that can
get in each queue in any given period (e.g., through a leaky bucket regulator).

4.3.3 GPS policy in a node

4.3.3.1 Generalized processor sharing (GPS)

Generalized processor sharing (GPS) is another view of fairness that is better than
TDM. For GPS, the ideal multiplexer node should allocate a share of the available capac-
ity to each stream, proportionally to its priority. However, this share must be immediately
available as soon as there is some data to be sent, even if other flows happen to be in
a burst period at the time. If some flows do not need to send data, then their reserved
share of the output capacity is redistributed to other streams proportionally to their respec-
tive priorities.

Unfortunately, this policy is only possible if we consider that the data of each stream
can be arbitrarily fragmented and that many data elements from different streams can be
sent at the same time through the output link of a node. This is called fluid approximation.
In the real world of packet data, a packet that is being sent takes all of the bandwidth,
even if another packet arrives simultaneously and would need its share of the capacity
immediately.

If for a moment we accept that packets can be arbitrarily fragmented, then the best
possible multiplexer node looks like a tube of toothpaste (Figure 4.4). If the red toothpaste
represents one data stream and the white toothpaste represents another data stream, the
output is a mix of the red and white toothpaste, where the “red” stream and the “white”
stream each get a fair share of the output.

We can estimate the worst case delay that an element of data belonging to a token
bucket-regulated stream (average rate p, maximum burst size o) would face going through
such a node: it would be o/R, where R is the capacity allocated to the stream through
the node (R > r).

———

y/

Figure 4.4 An ideal red/white multiplexer.

QUALITY OF SERVICE 123

GPS is a policy where the processing power of the router and the output capacity on
each interface are shared among the competing streams. Each stream receives at least a
share ¢; of the resources (ny:l ¢ =1).

A GPS node is non-idling as long as at least one stream is still queued (which means
that the scarce resource, output capacity, is never wasted transmitting nothing). The name
of this policy was chosen because there is a good analogy to the sharing of CPU cycles
between threads in a multitasking operating system.

In Figure 4.5, when packet 1 arrives, it initially takes all the available output capacity.
When packet 2 arrives, it shares the capacity with packet 1, which is still being transmitted.
Since both streams have the same priority (25%), the output capacity is shared equally
between packet 1 and packet 2. When packet 3 arrives, all packets compete for the
output, and the GPS multiplexer node allocates half of the capacity to packet 3 (stream
3 has a priority of 50%) and the rest equally between packet 2 and 3. At some point the
transmission of packet 3 is complete, and since there are no other packets from stream
3 in the queue the output capacity is shared again between packets 1 and 2. Note that
the order in which the transmission of packets completes is not the same as the order of
packet arrival, due to the higher priority of stream 3.

More precisely, if S;(s, t) denotes the volume of a stream that has gone through the
node between instant s and ¢, then:

Sits,0) _ &
Sj(S,l) - ¢j

for each session i continuously backlogged between s and . The backlogged active ses-
sions share the resources of inactive sessions (not backlogged) proportionally to their ¢;.

Input capacity C’ E
<.
o | Packet 3
3 2
Packet =1
1 o)
(2]

25% 25% 50%

MUX

o

c

1]

o.

>

«Q

e

Q0

Q

Py

(0]

@

A,

+—>
Output capacity C

Figure 4.5 Handling three packets using a ‘fluid’ multiplexer.

124 BEYOND VoIP PROTOCOLS

In other words, each session i can use at least the capacity ¢; x C at any time, where
C is the total capacity of the output interface considered. If all sessions are active, then
each session i uses exactly ¢; * C.

The service received by the token bucket-regulated session i (average rate p, maximum
burst size o) in a system where N token bucket-regulated sessions share the scarce
resource is always better than the service received by session i if all other sessions
start with their token bucket full, then send the longest allowed traffic burst, and finally
keep sending data at the maximum long-term average rate allowed by the token bucket
regulator. With this remark, we can calculate:

e The largest delay through the node o/¢; * C.

e The buffer size needed for the worst backlog o.

GPS policy also has a very important property: the relative order of departure (i.e., last
bit of the packet has been output) of two packets i and j is independent of future packet
arrivals. The reason for this is that if another packet arrives, the transmission speed of i and
Jj is changed homogenously (the factor of change is the same for i and j), which preserves
the departure time. The exact time of departure of i and j, though, is obviously changed.

4.3.3.2 PGPS policy in a node
4.3.3.2.1 The PGPS approximation

The fluid model used in GPS is not valid for real-world networks, where packets are
received as whole entities (i.e., nothing is processed until the final packet CRC is checked)
and put in the output queue as blocks of contiguous bits. Taking into account these real-
life facts leads to ‘packet by packet GPS’. The idea behind PGPS is to serve the packets
in the order in which they would leave under a GPS policy (see Figure 4.6). This order
of departure is not changed by future arrivals, so packets that have already been ordered
keep the same order, only newly arrived packets may be inserted in this arrangement.

Figure 4.7 is an illustration (PGPS left, GPS right) of the case when the transmission
capacity of each input and the output link is 1. The two leftmost streams are given a
weight of 0.25, whereas the rightmost stream is given a weight of 0.5. A packet arrives
for each stream every i time unit in our case (we take the transmission time of a packet
of size 1 to be the time unit): a; is packet i’s arrival time. In case you wonder why packet
1 is sent first while it only finishes second under GPS, this is because at the time the
PGPS node had to choose a packet for output (remember it is non-idling), packet 3 had
not yet arrived and so its departure time was not known.

4.3.3.2.2 Assessment of the PGPS approximation

Under PGPS, packets are sent in the order of departure as known when the decision to
select a new packet for the output queue is taken. Because we cannot guess what the
future will be, this might lead to errors as in Figures 4.6 and 4.7: a new packet (packet
3, Figure 4.6, time t3) arrives just after the selection of the new output packet (packet 1,

QUALITY OF SERVICE

125

Node’s view of the
theoretic fluid
model output as
packet 1 just
arrived (CRC
check complete)

Beginning of
reception of

\packet 1
]]

Node’s view of the theoretic

fluid model output after

packet 3 has arrived (CRC

check complete)

v

1

v A

t t

2 73

Figure 4.6 Handling three packets using PGPS, according to instantaneous ‘fluid model’
-projected completion order. The router calculates in real time the way packets would be
handled under fluid approximation and GPS, in order to find in which order they would finish.

2 3 .. 8g 2
1 a 1
a1
025 025 0.5 025 025 0.5
v PGPS i GPS

F’2 F2 e 8 3

31 +3 F1 . .

as ay

as (F3 known)
S a2 (F2 known)

as
a

Figure 4.7

a, (F; known)

a; = Arrival time

a4

F; = GPS finishing time
F’;= PGPS finishing time

PGPS and GPS packet ordering is not always identical.

33

a

a4

126 BEYOND VoIP PROTOCOLS

which arrived in Figure 4.6 at time #;) and the GPS theoretical departure time F), of
packet 3 is lower than the GPS departure time of packet 1 currently being sent. The
PGPS scheduler has no other choice than waiting until this one finishes. Because a PGPS
multiplexer cannot guess the future, in some cases the rule ‘PGPS sends packets in the
same order as the GPS finishing order’ is not followed.

Because of this, under the PGPS policy, some packets will have their departure time
later than under the ideal GPS policy. Imagine, for instance, a high-priority packet arriving
in the multiplexer queue directly after a low-priority packet has been sent to the output
transmission line. There is an upper bound to this added delay:

L

F)—F, < ga"
where Ly,.x is the maximum size of a packet and C the throughput of the outgoing
interface. This limit is approached in the example if we grow stream 3 weight to nearly
1 and we make packets 1, 2, and 3 arrive closer.

The worst delay through the node for stream i under PGPS becomes (L. is the
maximum packet size on inbound links, which must be smaller than the maximum
transmission unit, or MTU):

pr<Z 4 Loax 7,
i C
where r; = C * ¢; is the capacity reserved for stream i, C is the total capacity of the
output link, and 7r is the duration of processing in the router. This result is illustrated in
Figure 4.8.

The queue buffer necessary to prevent any overflow for stream i becomes a bit larger
than in GPS because packets may wait longer:

Q;k <o + Lmax

under the stability condition p; < r;.

It is obvious from these formulas that it is better not to have big packets, which was
one of the design goals of ATM. However, as output link capacity increases, this becomes
decreasingly important. With current transmission technology in excess of 1 Mbps at the
edge (xDSL) and multigigabit in core networks, this explains why ATM is quickly getting
displaced by IP.

As proof of this, let us number the packets in the order they are processed by the PGPS
server since the last busy session. For any packet p; there are two cases:

o All packets p; leaving PGPS before pi(j < k) also leave the GPS server before py.
Therefore, at the time f; when packet p; finishes under GPS, GPS has already served
all other packets p;(j < k). Because PGPS is work-conserving it will have served the
same volume as the GPS server between the beginning of the busy session and f;. All
packets p;(j < k) fit in this volume because GPS has served them, so PGPS has also
served them before fi, so f{ < fi.

At least one packet p,, leaving PGPS before p,(m < k) leaves after packet p; under
GPS. Among those packets, let us consider the one leaving PGPS last: py. If a; denotes

QUALITY OF SERVICE 127

With WFQ, the delay through the node can
be guaranteed to be lower than :

Burst_size/r + L5, /C

« ris the bandwidth reserved for that stream
« Cis the total bandwidth of the output link
* Limay is the MTU of the input link

Figure 4.8 Delay guaranteed by a single PGPS node.

the arrival time of packet i, then we have:
Ve [M+1,k], ai > fy_1

otherwise, if packet i had arrived before f;, , (this is when PGPS must choose which
packet will go after py_;), because packet i finishes before packet M under GPS
(otherwise M would not be the biggest integer lower than k having fy > f;) p; would
have been scheduled next, not py,. So we now have that no packet p;, i between M + 1
and k, had arrived before f);,_;. But, they have all been served before f; (otherwise
M would not be the biggest integer lower than k having fjy > fi). So we can write:

koop
fo> fua+ Z El

i=M+1

where L is the size of the packet and C the bandwidth of the output. Under PGPS we
have exactly:

ko
=fuat)&
o €
which finally gives:
L
fi > fi— ?M

and because L < L. We have our result.

4.3.3.2.3 Computing PGPS packet ordering

A packet has arrived when its last bit has arrived. We call af the moment of the arrival
time for the kth packet arriving from flow 7, and the length of the packet is Lf-‘. Let s{‘
and fl.k denote the moment at which packet k begins and finishes to be processed by the
GPS server. Then:

(a) s& = max{f*", ak}.

(b) fF=sF+1(LF), where t is the time used by the GPS server to process L bits.

128 BEYOND VoIP PROTOCOLS

T=V(t)a

~wv

Figure 4.9 The v(t) function.

The difficult part is that the processing speed of the GPS server depends on its load and
changes with each packet departure and arrival (called an event). If #; denotes the time
of event i, the processing speed for session i is:

o

DY

JEB@)

*r

where r is the total throughput of the outgoing link and B is the group of buffered
sessions at this time. This reflects the fact that a GPS server redistributes unused reserved

bandwidth to active sessions according to their precedence.
’

We call v(¢) the piecewise linear function of ¢ defined by its slope (Figure 4.9).

J
JEB()
We can rewrite (b) as:

i
o) [g e =1k

Writing S = v(s) and F = v(f), (a) and (b) become:

(@) SK=max{F/~', V(b))

Lk
(b) FF =58+ E with F =0, Vi.
This virtual time T respects the same order relations as ¢ because function v(¢) is nonde-
creasing. In order to build a PGPS multiplexer, for each packet it is enough to calculate
F, which is possible as soon as we receive the packet since a and L are known.

With this algorithm, we can immediately classify a new packet among the queued
packets according to PGPS scheduling. However, this calculation requires that the PGPS
multiplexer maintains the parameters necessary for the calculation of v(¢): the coordinates
of the last slope change, the current slope, and the number of backlogged sessions. Since
each arrival and departure will change these values and packets can arrive simultaneously,
this requires significant processing power on high-capacity links.

QUALITY OF SERVICE 129

4.3.3.2.4 PGPS multiplexers in a network

Along a path going through N PGPS multiplexers, the maximal end-to-end delay for a
token bucket-regulated data flow is:

N
. o+ (N—1L L
Df < =4y <—é‘m + Trn>

v

n=1

where r; is the smallest bandwidth amount allocated to stream i along the path. Both the
propagation time and the processing time should be included in term 7r. The first term
shows that the burstiness of the data flow increases through each PGPS multiplexer, due
to possible data accumulation while waiting to be served.

The formula is complex, but it is interesting to note that the first term decreases as
the reserved bandwidth increases (see Figure 4.10). The guaranteed delay through a set
of PGPS multiplexers can be reduced by increasing the reserved bandwidth beyond the
average bitrate of the data stream. This is the key result used by RSVP in guaranteed
service mode. Now if the stream goes through several WFQ nodes, the end-to-end delay
will be lower than shown in Figure 4.10.

There is also a more accurate version of the equation in Figure 4.10. Let us now
consider the peak emission rate p; of stream i:

> +Ci

+ Diot

=4
IA

ri

where:

n (0 — L)(p;i —1i)
(pi — pi)

Delay decreases with r

Figure 4.10 End-to-end delay through multiple PGPS nodes.

130 BEYOND VoIP PROTOCOLS

RSVP gives a data flow receiver all the parameters in this formula. The receiver then
selects the rate r that he wants to reserve in order to have an acceptable, guaranteed
end-to-end delay.

4.4 Signaling QoS requirements

4.41 The IP TOS octet

The IPv4 packet type of service (TOS) octet, shown in Figure 4.11, captures the param-
eters describing how this packet should be handled relative to quality of service. IPv6 has
a similar octet called the traffic-class octet.

The IPv4 TOS octet was traditionally structured as follows:

0 1 2 3 4 5 6 7

+----- +----- +----- +----- +----- +----- +----- +----- +
PRECEDENCE	TOS	MBZ
+----- +----- +----- +----- +----- +----- +----- +----- +

The IP precedence field uses the first 3 bits, encoding a value between 0 and 7. Packets
with a higher IP precedence value should have a higher priority in the network. The tra-
ditional meaning of the IP precedence values (RFC 791) values is described in Table 4.1.
The vocabulary used reflects the military origin of IP, a ‘flash’ IP packet was supposed
to be the electronic equivalent of a flash message.

The following 4 bits form the TOS field and were supposed to be used to mark a
desired trade-off between cost, delay, throughput, and reliability, as described in RFC

< Bits >
PO P R A
0 4 8 2 6 0 4 8
1 IVersion| IHL l Type of service | Packet length
T _2| Identification :Iags] Fragmentation offset
5 _3 Time to live | Protocol Checksum
§ _4 Source address
_5 Destination address
l _6 Options Padding
DATA ...

Figure 4.11 The IPv4 header.

QUALITY OF SERVICE 131

Table 4.1 Precedence values in the original RFC 791

Value Definition

Network Match packets with network control precedence 7
Internet Match packets with inter-network control precedence (6)
Critical Match packets with critical precedence 5)
Flash override Match packets with flash override precedence 4)
Flash Match packets with flash precedence 3)
Immediate Match packets with immediate precedence 2)
Priority Match packets with priority precedence (1)
Routine Match packets with routine precedence 0)

Note: Levels 110 (6) and 111 (7) are reserved for routing and some ICMP messages (see RFC 1812 for details).
Therefore, only six levels (routine—critical) remain for user applications.

1349. Originally, RFC 791 used only the first 3 bits as the TOS field, and the last 2 bits
were part of the MBZ field. RFC 1349 defined some extended values for 4 bits of the
TOS field:

e 1000—minimize delay.

e 0100—maximize throughput.

e 0010—maximize reliability.

e 0001 —minimize monetary cost.

e 0000—normal service.

The idea is that interactive services like TELNET should require TOS 1000. In the original
RFC 971 it was legal to add those values to the required combined properties. RFC 1349
no longer allows this, and value 1100, for instance, could mean anything. RFC 1349
requires the last bit (MBZ) to be 0: the MBZ (‘must be zero’) field is for experimental
use and is ignored by routers. RFC 1122 and 1123 (Host requirements) also defined a
few rules for setting TOS values for hosts, but they were based on a 5- bit TOS field.

If you are beginning to think that things are not crystal clear, you are right. Things are
not clear indeed. When sending traffic over the Internet with a specific IP precedence and
TOS value, no one can be really sure of the behavior of routers along the path, unless
only one provider was in control of the whole domain and had properly configured the
forwarding policies of all routers.

4.4.1.1 Using the IP precedence field

The most straightforward use of the IP precedence field is to cause interface schedulers to
prioritize marked packets. Beyond this, the IP precedence field can be used at the network
access level in conjunction with policy routing and priority routing. Packets primarily need
to be marked with the proper TOS field. If the sender of the packet does not do it directly,
the TOS field can be set by a router: many routers can overwrite the TOS field based on
certain filtering criteria.

132

BEYOND VoIP PROTOCOLS

For example, a router can be configured to set the IP precedence field of TCP traffic
on port 80 to critical (this example is for a Cisco router):

interface Serial0
ip address 10.0.0.1 255.0.0.0
ip policy route-map test

interface Seriall

ip address 192.168.1.1 255.255.255.0
interface Serial2

ip address 192.168.2.1 255.255.255.0
access-list 101 permit udp any any gt
1023

route-map test permit 2

set default int serial2
route-map test permit 1
match ip address 101

set ip next-hop 192.168.1.5
set ip precedence critical

/% interface facing the customer router

/% this activates policy routing on interface
Serial 0
I interface to low-latency backbone

I interface to normal latency backbone
/% this simple filter will match

RTP traffic (but not only)
/% defines the default path

/% Defines route map ‘test’ 1

/% all ip addresses that pass filter 101
/% will go through interface seriall

/% set TOS field to critical for all traffic
matching access list 101

Once this is configured in the customer’s access router, the network provider has two
options:

e Prioritize the IP traffic in the backbone according to the value of the TOS field. This
can be done using priority queuing, class-based queuing or weighted fair queuing.

e Use a separate path in the network (e.g., avoiding satellite links) for IP traffic with
critical priority. This ability to bypass the regular routing mechanism to set custom
next hops or custom IP precedence to packets is called policy routing. On Cisco routers
these features are also enabled by the ‘route map’ set of commands. In the example
the low-latency network can be reached through interface seriall.

4.4.1.2 (Re)defining the values of the IP TOS octet

There has been much theoretical work on the behavior of packet networks since the
creation of the IP, and people have much more experience on the sophisticated queuing
mechanisms used in QoS-enabled equipment. The work done for ATM and frame relay
networks has also helped us to get clearer ideas on the QoS-related information that needs
to be transported in each packet.

It was high time to review the original meaning(s) of the IP TOS octet and stop wasting
8 bits per IP packet. This revision work became the charter of the IETF DiffServ group,
with the intent to ‘provide scalable service discrimination in the Internet without the need
for per-flow state and signaling at every hop.” The Diffserv group redefined the semantics

QUALITY OF SERVICE 133

of the IPv4 TOS octet and the IPv6 traffic-class octet in RFC 2474 (December 1998)
which made both RFC 1455 and 1349 obsolete. The name TOS itself was changed; this
byte is now called the DS, or differentiated services, byte. The DS byte is subdivided into
a 6-bit DSCP (differentiated services codepoint) field and a CU (currently unused) field:

0 1 2 3 4 5 6 7

R e e il il Sl e it
| DSCP | cu |
R e e i S e e e

The codepoint value should be used as an index to the appropriate packet handler, or per-
hop behavior (PHB). A PHB applies a particular forwarding treatment to all packets with
a particular DSCP field and direction. This class of packets is called a behavior aggregate
(Figure 4.12). For instance, each behavior aggregate can be mapped to a particular queue
in a weighted round robin CBQ or WFQ scheduler.

The index is based on an exact match on the 6 bits of the DSCP (the 2 CU bits being
ignored). Each specified PHB should be assigned a unique default DSCP field among the
64 that could potentially be available with 6 bits. In fact, RFC 2474 has allocated three
pools of codepoints:

e xxxxx0 for ‘standard actions’. Eight codepoints (yyy000), called class selector code-
points, are already allocated for backward compatibility with the IP precedence field
of RFC 791. RFC 2474 states that the set of PHBs mapped to these codepoints must
offer at least two independent queues, expedite forwarding according to yyy values (the

‘Behavior aggregates’ are the collection
of packets with the same codepoint and
direction on a link

[DS=00000007> [DS=1100000 [DS =00000007 [DS=00000000> [DS=0010010>
[DS=00100107>> [DS=00000000>> | DS =00000000 [DS=00100100>> [DS = 00000001
[DS=00100177>> [DS=00100117=\) [0S - 0000001] [DS = 0000000 [DS=11000010>>

[DS = 00000010 [DS =1100001T= (DS =0010010T [DS = 00100100 [DS = 00100100
[DS = 11000001 [DS = 0010010 } [DS = 00100100 [DS = 00100107 [DS = 00000011
[DS = 00100107 [DS =11000000 | DS = 11000001 [DS = 11000007 [DS = 11000000

DS = 00000001 DS = 00000101 ()zDs =01100000] \@s = 00000100 <<DS = 01100000|
DS = 00000101 <<DS=01100000 <ZDS =01100000] <<DS = 01100000 DS = 00000001
<<DS =011000000 <<DS = 00000100] ()@s = 00000001)@s =00000100| DS = 0000001 1|
DS = 00000101 DS = 00000001 DS = 00000101} DS = 00000000 <<DS=01100000|

<<DS =01100000] <<DS = 01100000 S = 00000100])@s = 011000000 <<DS = 00000110]
<ZDS = 00000000 DS = 00000111 <DS = 00000100} DS = 00000101 <<DS = 00000000|

Figure 4.12 Behavior aggregates.

134 BEYOND VoIP PROTOCOLS

higher the yyy, the lower the average queuing delay), and prioritize yyy = 110 and 111
(routing traffic) over yyy = 000 (best effort traffic). Note that this set of requirements
does not imply the use of one particular scheduling algorithm (WFQ, CBQ, or priority
queuing could be used). This philosophy will be retained when defining other PHBs.

e xxxx11 for experimental or local use.

e xxxx01 for experimental or local use, or extension of the standard actions pool if it
gets fully allocated.

Even if each PHB is allocated a default codepoint, Diffserv nodes are free to assign other
codepoints to a particular PHB (except for xxx000 codepoints). In fact, DSCP fields may
have a meaning that is only local to a domain. At the boundary of such DiffServ domains,
it is very important to control the forwarding of IP packets according to their DSCP fields
and, if necessary, to map some codepoints to other values. The configuration of PHB-to-
DSCP field mapping is an administrative decision that may vary from domain to domain.
Two service providers with service-level agreements must either agree on DSCP field
values for each PHB or properly configure DSCP field translation at boundary nodes.

All packets with unknown codepoints (not part of the service-level agreement of a
service provider) are assumed to be part of the best effort forwarding behavior. This PHB
must always be present in a DS-compliant node. The default codepoint for the best effort
PHB is 000000, and this value must be recognized by all DS-compliant nodes. So far
only class selector PHBs have been defined (in fact, this was mostly a mapping of the
IP precedence semantics of RFC 791), but in the future there could be a ‘strict priority
queuing PHB’ with a different set of requirements.

In order to avoid mixing widely different traffic types into a single queue, providers of
DiffServ networks are expected to perform some traffic shaping/regulation at the edge of
the network (e.g., with a token bucket). Occasionally, there will be flows exceeding regula-
tor settings. It is not always a good idea to immediately mark such out-of-profile packets
for best effort forwarding, since this practice can introduce unnecessary desequencing.
Maybe the network still has enough capacity to carry the excess packet in sequence;
therefore, the best solution is to mark this packet as being ‘out of profile’. A node will
forward this packet as if it was ‘in profile’ if there is enough capacity locally or discard
it otherwise (or mark it for best effort forwarding). The solution currently recommended
in RFC 2475 for marking in-profile and out-of-profile packets is to use two codepoints.
In a previous proposal, the first bit was allocated to mark an out-of-profile packet:

0 1 2 3 4 5 6 7

R e e e il sl S e
|IN | PHB | cu |
R e e i e e e i

where ‘IN’ represents in (1) or out (0) of profile. The CU field has yet to be allocated, but
could be used for forward/backward congestion notification. This has been very useful in
frame relay networks.

A more complete description of the differentiated services architecture has been pub-
lished in RFC 2475 (December 1998). This RFC mainly introduces a specific DiffServ

QUALITY OF SERVICE 135

Figure 4.13 The DiffServ ecosystem. The ingress node implements the traffic-conditioning
agreement (TCA) used by the provider’s service level agreement (SLA).

vocabulary (some of which appears in Figure 4.13), discusses the DiffServ paradigm, and
compares it with other architectures supporting service-level agreements.

4.4.1.3 Remaining issues with IP TOS/DS octet

4.4.1.3.1 Beware of layer 2!

It is important to remember that IP is used as a layer 3 protocol only and, therefore, any
layer 2 multiplexer can potentially ruin the IP-level quality of service. Here are a few
common examples:

e Ethernet: most PCs and IP phones are connected to Ethernet LANs. While shared coax
cable LANs have almost disappeared, most corporations still have Ethernet LANSs based
on Ethernet hubs. Since hubs typically broadcast any received frame to all connected
Ethernet segments, such networks frequently have a high percentage of packets lost
due to Ethernet-level collisions. VoIP should never be deployed on such networks. At
a minimum, VoIP should be deployed on switched LANs (switches maintain a cache
of MAC Ethernet addresses connected on each link and therefore forward Ethernet

136 BEYOND VoIP PROTOCOLS

frames only to the proper link, reducing unnecessary broadcast traffic). In many cases,
however, this is still insufficient if Ethernet concentration links are used where Ethernet
frames can get discarded with a probability of over 1% (this can happen even on
moderately loaded networks, due to the bursty nature of data communications). A
possible enhancement is to use two separate LANs: one for bursty data traffic, one for
IP telephony (switched LAN). On recent IP phones and Ethernet switches, the IEEE
802.1Q VLAN standard allows network architects to emulate two distinct Ethernet
LANs on a single physical network (a 12-bit VLAN tag is appended to the MAC
address, as well as 3 bits whose usage is defined in 802.1P). Many IP phones and
switches also support the 802.1P QoS standard, which offers eight levels of QoS on
an Ethernet LAN: these levels are offered by managing the 3 QoS bits and, in case
of collision or congestion, lower precedence frames get discarded. This strict priority-
based QoS is sufficient on LANs, because latency is always very low. IP precedence
DSCP fields map easily to these eight-layer two-precedence levels.

e ADSL: when service providers began deploying ATM DSLAMs (ADSL access con-
centrators) around 1995, ATM was still regarded by many as the technology of the
future for multi-service applications. The Internet and IP technology were still con-
sidered a toy. As a consequence, most service providers did not anticipate that all
future multimedia applications would run exclusively on IP and planned their support
for QoS only for native ATM applications. ATM has indeed an extensive support for
QoS, based on a connection-per-connection negotiation that is part of the connection
set-up process. Unfortunately, service providers quickly discovered that dynamic con-
nection establishment did not scale to large networks, and most ADSL offers are built
on ADSL CPEs connected to the core ATM network through a single ATM permanent
virtual connection. All IP traffic is therefore routed over that single channel and all IP
packets, high priority or not, are sent as fragmented cells. When congestion occurs (e.g.,
on the ATM concentration links from the DSLAM to the backbone), cells are dropped
at random. This has a very negative impact on IP traffic: it is very inefficient, as a
single lost cell will prevent the destination router from correctly reconstructing the IP
packet, but all the other now-useless cells will still be conveyed by the ATM network.
It also ignores IP precedence completely, and high-priority IP traffic is impacted with
the same probability as the low-priority IP traffic. This problem has become the hottest
issue of many ADSL service providers. All newer DSLAMs are now [P-aware and can
properly discard whole packets and prioritize them according to precedence fields. For
networks based on older DSLAMs, there can only be work-arounds (e.g., oversizing
the ATM network to prevent cell loss) which create two ATM connections per ADSL
CPE (one for high-precedence traffic, one for best effort) or use of the CPL ATM cell
bit (cell loss priority).

e Frame relay: some international backbones still rely on frame relay networks for IP
transport. Many of these frame relay networks are still relatively old and were optimized
for data only. The only important quality-of-service parameter for such data networks
was frame loss; in order to reduce it to the minimum, large buffers have been configured
in each frame relay node, thus preventing overflows due to data bursts. Unfortunately,
this also creates large, uncontrollable delays (and jitter) and IP packets transported on
such layer 2 networks cannot transport voice.

QUALITY OF SERVICE 137

o Wireless links: the 802.11 family of wireless standards is very popular. However, at
present most vendors do not implement any quality-of-service mechanism that would
enable VoIP packets to have precedence over best effort data. The 802.11e prioritization
standard is required for any serious implementation of VoIP and data over 802.11
links. Until then, wireless networks can only be used by VoIP if they are dedicated to
voice only.

4.4.1.3.2 Number of traffic classes

Sorting flows based on the old IP precedence value limits the number of queuing behaviors
to eight, of which six are available to end-user applications. This can be further refined
by using packet filters based on the protocol number (e.g., to prioritize UDP over TCP)
or destination/source addresses and ports.

Offering six classes of service to the end-user may seem enough, when thinking only
in terms of broad ‘classes’ that should be prioritized, because it is hard to think of more
than six very district and useful behaviors. However, this is valid only if all sorts of traffic
classes that require a specific forwarding behavior can be grouped in the same queues.
Unfortunately, very bursty traffic and smooth traffic should not be mixed in the same
queues, as this might degrade the properties of smooth traffic (e.g., voice). This requires
a traffic-class value for each combination of desired per-hop behavior and category of
‘burstiness’. In addition, as we have seen above, it is useful to mark out-of-profile traffic
at the edge of the network, which really requires two identifiers for each traffic class.

The more recent DiffServ framework makes things potentially much better, since up to
32 packet-handling algorithms could be indexed (with the possibility of marking out-of-
profile packets, which uses two codepoints for each traffic class). For current applications,
this new framework seems to provide enough traffic classes.

4.4.1.3.3 Identifying data flows that should be mapped to traffic classes

In an ideal world, all applications would ‘know’ the DSCP codepoint to use when sending
IP packets, and no one would try to cheat by using inappropriate codepoints. Unfortu-
nately, in real networks it is frequently necessary to either set or verify the DSCP fields
before injecting the packet into the network. Packets that should use a given codepoint
can be recognized using filters based on the packet protocol, IP address, etc. However,
some application sessions are impossible to prioritize using static filters (e.g., all appli-
cations that use a dynamic port negotiation, such as SIP or H.323). If the router has no
proxy capability for the application, it has no way of knowing which port to prioritize.
The only possibility is to prioritize an entire range of ports or all packets originated from
the host. Obviously, in many cases this is not enough. In a shared commercial backbone,
this also creates potential security issues: since the prioritization mechanism uses static
filters, a devious user can decide to design an application that ‘looks like’ an authorized
application but uses many more resources (e.g., if the provider prioritizes UDP in order
to speed up small DNS queries, videoconferencing users will also benefit from it, while
they obviously use many more resources).

As we will see, RSVP provides a much more powerful solution to negotiate certain
QoS levels for a given data stream dynamically. RSVP can also be extended to include

138 BEYOND VoIP PROTOCOLS

bits/s

time

Figure 4.14 Sessions with same average rate and peak rate, but different burst size.

authentication mechanisms and, therefore, can secure access to the backbone resources
for prioritized traffic.

4.4.1.3.4 Network dimensioning and pricing

For network dimensioning, it is very useful to know the characteristics of the data streams
that are being multiplexed. For instance, let us compare the multiplexing of the sessions
illustrated in Figure 4.14:

e Flows having an average rate of 20 kbit/s, a maximum burst of 1 kbit at a constant
rate of 100 kbit/s, and a minimum constant bitrate of 10 kbit/s.

e Flows having an average rate of 20 kbit/s, a maximum burst of 100 kbit at a constant
rate of 100 kbit/s, and a minimum constant bitrate of 10 kbit/s.

In both cases it is easy to calculate that the high bitrate occurs one-tenth of the time and
the low bitrate occurs nine-tenths of the time. But, for the first type of flow the bursts
are very short (1/100 s), while in the second case the bursts last 1 s. So, in the first case
the provider will be able to fit 1,000 flows in just a little more than 1,000 % 20 kbit/s
(20 Mbit/s): the excess traffic during bursts will accumulate in small router buffers, and
the resulting delay will not be too large. But, in the second case the bursts last much
longer: the required buffers would be too large for a 20-Mbit/s link and the resulting
delays unacceptable. So the provider needs to provide significantly more than 1,000 *
20 kbit/s in order to keep the buffer size low in routers.

In general, bursty traffic is much more expensive to carry than smooth traffic. In the
next generation IP networks providing QoS, the provider will probably try to isolate these
flows and apply a special pricing (such a pricing could be hidden in a ‘right to use’ the
application generating such data streams). In order to identify such flows, it would be
useful to have a description of the characteristics of each data stream that a customer

QUALITY OF SERVICE 139

sends in the backbone. Based on this description, the provider can decide which streams
can be grouped and how expensive it is to carry them. The TOS octet value alone does
not describe the traffic characteristics, and there is no easy way for the provider to sort
similar streams together and have higher tariffs for more bursty streams.

We will see that RSVP provides the network with many parameters that characterize
the properties of the data stream, which helps each router to decide in which queue the
traffic should be sent and eventually to choose a tariff.

4.4.1.3.5 Programming applications that require QoS

The internal backbone of a provider will have well-defined TOS values/DS codepoints
for each class of service. But different providers will probably use different values for
the same class. Even with the current DiffServ RFCs only the relative behaviors of class
selector PHBs are defined, but the quality of a particular codepoint could vary widely when
changing providers. When designing a DiffServ-aware application, the programmer cannot
know in advance which codepoint value must be used and, therefore, the application will
probably need some configuration. The average user will have no means of deciding
which codepoint is appropriate for each application: What are the implications for delay?
Can this application recover from packet loss? Is it sensitive to jitter?

It is much easier for the programmer to be able to ask the network what it needs in
terms of bandwidth and delay, and let the network provide the required QoS. This requires
some signaling mechanism between the applications and the network, and this is where
RSVP can play a key role.

44.2 RSVP

4.4.2.1 RSVP is an enabler of a business-grade Internet

Many people used to consider IP networks would never need sophisticated QoS mech-
anisms, because the ever-increasing capacity of backbones would always push back the
time when QoS would really be useful. ‘Peer-to-peer’ applications have demonstrated that
this assumption was wrong. From the point of view of service providers these applications
can be considered as a new generation of viruses which do not attack PCs, but attack best
effort IP networks instead: file exchange software automatically uploads files without a
need for human intervention, ensuring that whatever capacity is available in the backbone
will always be saturated, and peer-to-peer sessions cannot be easily identified (they are
even designed to escape most classification attempts). This type of traffic is now jamming
most IP networks, and the situation is likely to get much worse when users discover that
they can download not only MP3 music, but also high-quality MPEG4 movies.

This situation will soon require legitimate applications to be able to use a level of
service beyond ‘best effort’. We saw in Section 4.4.1.3 which difficulties are encountered
when we only use IP precedence as a way to signal a need for QoS. Commercial providers
need to be able to:

e Promote native support of QoS by IP applications.
e Arrange agreements to support QoS across networks managed by different entities.

140 BEYOND VoIP PROTOCOLS

e Provide QoS guarantees when needed.
e Bill for the service.

Therefore, they need to:

e Give applications a uniform way to ask for a level of QoS.
e Guarantee a level of QoS to the requesting application.
e Provide authentication.

RSVP is an appropriate answer to all these issues.

4.4.2.2 Services provided by RSVP

RSVP is the key component of the IETF integrated services model (IntServ) and offers
two types of services:

e The controlled load service: an application requesting the controlled load service for a
stream of given characteristics expects the network to behave as if it was lightly loaded
for that stream. The exact meaning of this is not completely defined in RSVP, but the
general understanding is that packet loss should be very low or null. The absolute delay
is not specified, but jitter should be kept as low as possible since in a lightly loaded
network router buffers are empty. This is typically the service that could be requested
to distinguish normal web browsing or email applications from peer-to-peer traffic.

e The guaranteed service: the guaranteed service not only requests bandwidth, but also a
maximum transit delay. RSVP’s guaranteed service is built on the PGPS paradigm (see
Section 4.3.3.2). In the PGPS formula of the maximum theoretical delay, parameters C
and D appear as sums along the path of the stream through the network: RSVP is used
to calculate these sums and propagate the intermediary results between RSVP routers.
The aim is to make C and D available to the recipient of the stream, together with the
traffic characteristics of the flow, such as maximum burst size o, average rate p, and
peak rate p. This information allows the recipient to calculate the bandwidth » he wants
to reserve for that stream in order to achieve a particular delay limit: in the formula
given in Section 4.3.3.2.4 the maximal delay D} is a decreasing function of r;, so by
allocating a greater minimal rate r; the recipient can make the transit delay through the
network as close as possible to Dy, which is the smallest value he can hope for. In
our description of PGPS, we emphasized that packets would not arrive later than the
calculated PGPS delay limit, but they could also arrive much sooner. This means that
RSVP cannot be used to specify maximum jitter independently of maximum delay. The
jitter guaranteed by RSVP is nothing more than the difference between minimum path
latency (propagation delays) and maximum guaranteed delay. The only way to request
very low jitter is to request a delay that is very close to minimum path latency: we
will see later that this is not very practical since the bandwidth reservation needed to
request such a delay is extremely large. Not having strict control over jitter is in fact
not very important for most applications: interactive applications need very low round

QUALITY OF SERVICE 141

trip delays and can adapt to jitter using jitter buffers and protocols, such as RTP. But
this could be a problem for applications using very large bitrate streams, because they
would need to allocate a lot of memory for jitter buffers.

There are no clear guidelines in IETF documents for the use of guaranteed service versus
controlled load service when writing RSVP-aware applications. The main difference is
that controlled load parameters do not include target end-to-end delay values. Since the
guaranteed service is more complex to implement, it may not be as readily available as
controlled load mode.

4.4.2.3 RSVP messages

RSVP mainly uses two types of messages:

e PATH is sent by the source of the stream. This message initially contains data describing
the stream (TSPEC); in particular, the bucket parameters ¢ and p. It follows exactly
the same path as the stream itself! (including multicast transmission, see Chapter 6),
and each router updates the data elements Cy and Dy, that are also part of that
message (ADSPEC). Figure 4.15 describes the propagation of PATH messages for a
multicast stream. At each hop, an RSVP router modifies the PATH message to update

PATH _
120.210.64.1 O Receiver A
UDP port 1234

TSPEC, ADSPEC

- ® Receiver B
Sent periodically from the source Q
19219023411 495 190.234.1 120,210764.1 o
O—m> @ = @ |
Source 194.200:55.141 0 Receiver C
PATH
192.190.234.11 4::7
UDP port 1234
TSPEC, ADSPEC
Q Receiver D
PATH
194.200.55.141
UDP port 1234
TSPEC, ADSPEC
O Receiver E

Figure 4.15 PATH message propagation (multicast example).

I'RSVP is only useful if the data packet part of the session follows the same path as PATH
messages: in order to enforce this for some complex routing algorithms, it is necessary to have a
dialog between the RSVP process and the routing process; this is the role of the RSRR (routing
support for resource reservation) interface.

142 BEYOND VoIP PROTOCOLS

the C and D parameters, and includes its IP address in the message before forwarding
it. It also stores the last hop address that was originally in the PATH message. As
illustrated on Figure 4.15, if one of the routers is not capable of handling RSVP, it
simply forwards the PATH packet as it received it.

e RESV is sent by the recipient(s) of the stream toward the source following exactly the
inverse path of the upstream packets and PATH messages. Each RSVP router, when
receiving a RESV message for a flow, forwards it to the last hop address that was
previously stored from the PATH message. The RESV message specifies the minimal
bandwidth r; required for stream i, calculated from the data contained in the PATH
message using PGPS theory, in order to obtain a desired maximum delay. Eventually,
it can also specify an error margin on that target delay, if it needs bandwidth but not
low delays (e.g., a video-streaming application). The session for which the capacity
is reserved is characterized by a filter; so, a single reservation can apply to several
streams (e.g., several sources in a conference). This is called a shared reservation.

Figure 4.16 shows how RSVP works even through non-RSVP routers: receiver A used
the last hop address which it found in the PATH message as the destination address for
the RESV message. This is in fact the address of the last RSVP router along the path:
for RSVP, non-RSVP clouds appear between A and B as a direct link between A and
B. If there is no congestion or significant delay in the non-RSVP cloud, the end-to-end
reservations made by RSVP will still be valid.

UDP to 120.210.64.1
Each receiver willing to RESV Q Receiver A

make a reservation sends an FilterSpec
RESV upstream Flowspec(RSPEC, TSPEC)
Policy data
® @ Receiver B
192'%534'11 192.190.234.1 120.210.64.1 Q
Source 194.200155.141 (] @ Receiver C
UDP to 192.190.234.11
RESV Q
FilterSpec
Flowspec(RSPEC, TSPEC)
Policy data Receiver D
UDP to 194.200.55.141
RESV
FilterSpec
Flowspec(RSPEC, TSPEC)
Policy data Q Receiver E

Figure 4.16 RESV message propagation (multicast case).

QUALITY OF SERVICE 143

Figure 4.16 also shows how multiple reservations for a multicast stream can be merged.
If receiver B requires a low delay (large reserved rate) and receiver C is prepared to cope
with more delay for the same multicast stream, then only the largest reservation will be
forwarded upstream. In the case of multicast streams, reservation requests are initiated
by any receiver and merged in the network. This is a very powerful feature of RSVP,
which so far has no equivalent on ATM networks (although it could be included in ATM
UNI 4.0).

During the reservation set-up phase, it is very important to avoid losing either the first
PATH message or the RESV message, otherwise the reservation could be delayed by up to
30 s. For instance, over a DiffServ-enabled backbone, PATH and RESV messages could
be transmitted over the netctrl (precedence level 7) class of service.

4.4.2.4 Using RSVP to set up a controlled load reservation

The RSVP controlled load service is very simple and can be implemented over custom-
queuing routers. If a receiver requests a reservation of 200 kbits/s for a stream with bursts
up to 10 kbits, each router can configure its scheduler to allocate an average of 200 kbits/s
to the stream: for instance, if the outgoing link is an E1 line (2 Mbits/s), then the scheduler
must service the queue allocated to the stream at least 10% of the time.

This is not enough to guarantee a low packet loss if the traffic is bursty: each RSVP
router must also make sure that the queue buffer is large enough to accommodate bursts.
For instance, in our example, if the scheduler services the stream for 1 ms in every 10 ms,
then the worst case is if the burst occurs just after the scheduler has finished to service
the stream: the stream traffic will accumulate for 9 ms (i.e., 10 kbits for the burst and
0.009 * 200 kbits for the regular flow after the burst). In this case the queue buffer needs
to be large enough to accommodate 11.8 kbits of data. The calculation can be refined
if we also know the peak rate of the traffic, in which case the initial burst will not be
considered instantaneous.

This step is repeated for every RSVP-enabled router on the path. Each router can
change the characteristics of the stream, and in general the traffic will become increas-
ingly bursty; so, routers downstream will have to allocate even larger buffers and may
choose to reshape the stream. Some routers have low-capacity CPUs and may also become
congested because of a lack of CPU power (this is especially true for flows generating
small packets, such as IP telephony). The reservation algorithm should also make sure
that enough CPU cycles will be saved for processing of the flow.

4.4.2.5 Using RSVP to set up a guaranteed service reservation

4.4.2.5.1 Example

In Figure 4.17, source A sends a stream to B and declares the following stream charac-
teristics in the sender TSPEC and ADSPEC parts of the PATH message:

e TSPEC: (p = 10 Mbits/s, L = 2 kbits, p = 1, 024 kbit/s, 0 = 32 kbits).

144 BEYOND VoIP PROTOCOLS

TSPEC:

(p=10 Mbits/s, M= 2 kbit, r= 1,024 kbit/s, b= 32 kbit)
RSPEC:

1,695.1 kbit/s

Figure 4.17 Updates to ADSPEC through the network.
e ADSPEC: (Ctot = 0, Dt()t = 0)

The first RSVP router R1 keeps the TSPEC part of the PATH message unchanged but
modifies the ADSPEC part (i.e., Co = 11 Kbit, Do, = 0.05 s). The second RSVP router
R2 relays TSPEC as it is and modifies ADSPEC (i.e., Ciy = 55 Kbit, Dy = 0.1 s). The
receiver B chooses the guaranteed QoS service to obtain a specific end-to-end delay. To
find which reservation he needs as a function of the desired delay (which will always be
greater than Dy, = 0.1 s), he solves the equation derived from the above results:

P (p—p)(L+Co) + (0 —L)p
(Ddesired - Dtot)(p - p) +o-L

For r = p the delay is simply D = (0 + Cyo)/p + Do or 0.185 s; so B can choose any
delay between 0.1 and 0.184 s. Here are the results obtained with some reservation values:

with the constraint > p

Desired r to ask
delay (s) (kbits/s)
0.15 1,695.1
0.11 6,7717.1

0.101 20,823.9

QUALITY OF SERVICE 145

It is obvious that user B has to be reasonable and pay, because the reserved bandwidth
R ‘explodes’ when the desired delay approaches Dyq!

B chooses a delay of 0.15 s and decides to request 1,695.1 kbit/s. It sends a RESV
message with TSPEC = (p = 10 Mbits/s, M = 2 kbit, r = 1,024 kbit/s, b = 32 kbit) and
RSPEC = 1,695.1 kbit/s toward A along the path followed by the PATH messages.

The receiver can also specify the ‘slack’ he can accept on top of Dyy. This is useful if
B, for instance, ideally would like to have a low delay of 0.15 s but is prepared to accept
a delay up to 0.185 s. This slack value is then transmitted in the RSPEC element. It can
be used in a node if that node cannot allocate the requested bandwidth: in that case the
node will ‘eat’ a part of the slack and pass on a decremented value, instead of rejecting
the reservation.

RSVP can ‘work’ over non-RSVP clouds, since these clouds will forward PATH and
RESV messages. But, these clouds are seen as direct links by RSVP, and the delay
they introduce as well as the congestion state will not be reflected in PATH parameters:
therefore, the RESV message will be wrong. This works only when the non-RSVP cloud
is non-congested and is a low-delay area compared with the delay in the RSVP region.

4.4.2.5.2 Soft states

It would be a very bad idea to agree to make a reservation in a node if there is the slightest
chance that this reservation is not properly terminated. In ATM or PSTN networks, this
leads to rather complex, but safe, signaling. The reservations within an IP network are
made even more complex because routes can change at any time such as when the network
topology changes (e.g., after a link failure). This is generally considered a feature that
gives IP a lot of robustness facing network failures. But when you consider a reservation
along a given path, this becomes a serious issue. RSVP works around this problem by
only making temporary reservations, which must be refreshed from time to time by the
receiver of the stream: a reservation is a ‘soft state’ with a timeout.

Since PATH messages follow the path of the stream, they will follow the new routes.
Therefore, new RESV messages, which follow the inverse path, will attempt to make
reservations along the new route. The old reservations will not be properly terminated
through signaling, but they will time out. In some cases it will not be possible to set
up the reservation along the new path: for instance, if the network is too congested or
if the policy along this path is different, but this should not happen very often in a
well-designed network (the same situation could also occur in the PSTN if an important
link broke down). However, there could be an adverse interaction between RSVP and
dynamic routing algorithms assigning packets to the less loaded link: these algorithms
should make sure that existing RSVP sessions remain intact (i.e., not change the route of
PATH messages ‘on the fly’).

4.4.3 Scaling issues with RSVP
4.4.3.1 CPU limitations

RSVP itself is nothing more than a way to calculate and transmit the parameters that
a node needs in order to perform a bandwidth reservation. RSVP is not responsible for

146 BEYOND VoIP PROTOCOLS

actually reserving bandwidth. A router must implement a scheduling or resource-sharing
mechanism, such as PGPS. The class of algorithms that can support RSVP is generically
called ‘weighted fair queuing’, but this name can apply to PGPS or other simplified
schemes, such as SCFQ (self-clocked fair queuing). The resulting performance and actual
delay limits obtained vary widely according to what is actually used.

The first difficult task is to be able to sort in real time all incoming flows based on
the source address and port, and destination address and port. This function is commonly
called a multi-field classifier (MF classifier). Many implementations are very sensitive
to the number of flow filters that need to be recognized and have serious scalability limits
when the number of filters exceeds a few dozens. Other implementations use optimized
classification trees based on bit-per-bit analysis with a fixed convergence time that does not
depend on the number of filters. There are even hardware-based real-time implementations.

The second difficult task is to schedule the packets to be served in an optimal order.
A quick glance at the equations of PGPS gives an idea of the complexity of this task,
which must be performed for every packet: PGPS, while it leads in theory to the tightest
delay limits, requires a lot of processing power.

In reality, it is not the ‘complexity’ of RSVP that is the obstacle (actually, RSVP is
simpler than many other signaling protocols), but the complexity of PGPS and other WFQ
mechanisms. For instance, the most highly tuned kernel-mode Unix implementations of
PGPS on a Pentium 166 (Ian Marsch, SICS) achieve a throughput at 90 Mbits/s over
ten flows.

It is quite obvious that PGPS cannot be applied stream by stream in a backbone net-
work. Most router vendors are using heuristics that approach the behavior of PGPS but
require less CPU power. Still, it is impossible to scale per-stream queuing techniques
to the throughput required in modern backbones. Backbones require approached tech-
niques where all streams with similar properties and requiring similar priority handling
are grouped and handled by the same queue.

4.4.3.2 Over-provisioning

A more fundamental problem is the fact that the hard-delay limits derived above have
nothing to do with what is observed statistically. For a given reservation r, the delay
observed would be much lower than the delay guaranteed by PGPS for almost all packets.
The theory behind the guaranteed mode of RSVP leads to systematic over-reservations for
all applications that can tolerate losing a delayed packet from time to time. It is expected
that most applications, knowing this problem, will select the controlled load mode of
RSVP and will simply use the D parameter of RSVP PATH as an indication of what
delay they are going to experience (e.g., to set jitter buffer parameters): in this mode, the
exact average bandwidth advertised by the source is reserved to avoid packet loss.
However, in the case of a link that carries much more best effort data than real-time
data, the over-provisioning required by the guaranteed service is not as bad as it seems.
This is a very common situation when we consider that peer-to-peer software agents and
other fancy applets on our desktops can eat as much bandwidth as the developers think
they need, while we cannot speak more than 24 hours a day. Most scheduling algorithms,
including of course PGPS, are able to reallocate the bandwidth not actually used by a

QUALITY OF SERVICE 147

Here RSVP doesn’t use
all of its reservation,
best effect traffic fills the leftover

Here RSVP uses all its reservation and
best effort traffic is pushed back

Best effort

Figure 4.18 Best effort traffic uses unused reserved bandwidth. A: reserved bandwidth for
RSVP streams; B: available bandwidth.

stream to the rest of the traffic: the extra bandwidth reserved but not actually used by
RSVP will be used by best effort traffic and there is no waste (as shown in Figure 4.18).
On links where real-time traffic is predominant, the network will refuse, based on PGPS
theory, reservations that in practice it could have handled; this is indeed a problem. This
problem is not specific to RSVP, it also occurs on ATM-based networks much more often,
as these networks have mostly been used by professional organizations for applications
very sensitive to QoS that have no best effort traffic.

4.4.3.3 State

RSVP is a connection-oriented technology. As such it requires network nodes to maintain
state information about each connection in the network. This is a fundamental move from
the connectionless paradigm of IP and probably the source of much of the debate around
RSVP. Any other connection-oriented technology has the same problem: basically, these
techniques do not scale as the number of connections increase through the network. In
the optimal case of multicast flows, the amount of state information scales as the number
of peripheral end points. In the case of unicast traffic, the amount of state information
scales as the square of the number of peripheral end points!

Compared, for instance, with ATM, RSVP has its advantages and drawbacks. The one
major advantage is that an IP network implementing RSVP requires state information
only about QoS connections; so, if most of the traffic only needs best effort transport, it is
only a small subset of the overall traffic. By comparison ATM will use a connection per
stream, regardless of whether the stream has requested QoS or not (UBR connections). But
ATM is based on persistent states: there needs to be signaling activity only at connection
set-up and tear-down. Since RSVP is based on soft states, each connection needs periodic

148 BEYOND VoIP PROTOCOLS

signaling activity; so, the work required for the same amount of streams is much higher
for RSVP than it is for ATM.

In the current state of the specification, it is hard to decide whether RSVP is really better
or worse than other connection-oriented QoS techniques. However, there is an interesting
perspective on the future of RSVP which could improve its scalability: using it mostly as
an edge reservation request mechanism and thus simplify QoS management in the core
network. This new layered model is demonstrated in Section 4.4.4, and a practical use of
this model is discussed in Section 4.5.4.3.2.

4.4.4 Scaling RSVP with a layered architecture

The solution that emerges for the use of RSVP on commercial networks is to employ it as
a layered architecture that utilizes the fact that RSVP messaging can cross a non-RSVP
cloud. This solution focuses on the business requirements for RSVP: in short, use RSVP
where it is very useful, and avoid it as much as possible when it is not strictly necessary.
The business requirements are:

(1) To give applications a uniform way to ask for a level of QoS and describe data
streams, in order to minimize manual configuration and management tasks.

(2) To find a way to guarantee a level of QoS, end to end, for each application that has
requested it.

(3) To provide authentication and facilitate billing.

(4) To provide the necessary statistics in order to help the backbone provider properly
dimension its network.

Requirements (1), (3), and (4) are for access nodes only. The only requirement that seems
to require RSVP in the backbone is (2). If we can find another way to guarantee QoS in
the backbone, then RSVP could be used only at the access network.

With these remarks, it is logical to divide the network into two separate concen-
tric layers:

e In the outer layer, RSVP is used with flow-by-flow WFQ, which is possible because
the bandwidth and the number of streams are still low. In addition, access routers deal
with security and generation of accounting information for billing.

e In the core network, streams with ‘similar properties’ (see Section 4.4.4.1) and facing
similar constraints in terms of delay and required bandwidth are grouped using classes
of service. Core routers do not perform any per-flow accounting or policing, and are
tuned to achieve a maximal throughput with minimal delay.

4.4.4.1 Flow grouping in the backbone

Section 4.3.3.2 summarizes results that relate to the delay limits achievable using a
separate virtual queue for each stream scheduled using PGPS weighted fair queuing.

QUALITY OF SERVICE 149

However, this scheme is not scalable due to the amount of processing power required. In
this section we try to evaluate the impact of grouping several streams together in a single
queue in the backbone.

In this section we call ‘similar’ those streams having similar characteristics in terms of
burstiness/average rate ratio and maximum packet size. A ‘class of streams’ is composed
of all streams i whose characteristics fall within the following limits:

e Average rate k; (p £ Ap).
e Maximal burstiness k; (o0 + Ao).
e Maximal packet size L,y is supposed to be common to all streams in this class.

We now suppose that N streams fit in this definition (e.g., the rate and burstiness chosen
are typical of the G.723.1 sound channels of IP phones). The resulting combined stream
will have an average rate of (p = Ap)), k; and a burstiness lower than (o0 = Ao)), k;.
With these results we can calculate a delay bound at each backbone hop, where ¢ means
‘class’:

. < (0 £A0)) ki N Lnax T = (0 £ Ao) Lpax
CT (AP ki C (0 £ Ap) C
assuming that the aggregate stream is assigned a portion of total bandwidth C equivalent
to (o £ Ap)), k; (stability condition).
If each individual flow had been assigned a separate queue under PGPS and a capacity
equal to the average rate, the result would have been:

L
pr<Zy 2T (B)

i

+Tr (A)

Equations (A) and (B) give very similar results, which shows that grouping similar streams
in the backbone does not cause any significant loss in guaranteed end-to-end delay. More-
over, (A) is really a worst case bound since it assumes burstiness is an additive parameter:
in reality, when each individual stream is independent the resulting burstiness is much
lower. How much lower depends on the exact nature of the data streams, but for a sum
of periodical streams with random phase it can be calculated exactly. In Figure 4.19 the
sporadic nature of source s is defined as MaxThroughput(s)/AverageThroughput(s), where
MaxThroughput(s) is defined as the level that will be exceeded by Throughput(s, ¢) with a
probability lower than 107°.

If we now consider end-to-end delay, grouping several ‘similar’ flows is very beneficial.
One reason is that the maximum burst size of the aggregate stream is likely to be much
lower in proportion to the aggregate bitrate. In addition, in the end-to-end formula given
for PGPS through H hops, one of the components of the delay was (H — 1)Lyax/7,
with L, the largest datagram size: when grouping several flows, this now becomes
(H — 1)Ly« /Nr, which is much less!

If the grouped flows are similar in sporadic nature, less bandwidth is needed to achieve
the same delay limit with a very high probability. This suggests that streams in the
backbone with a similar sporadic nature at a similar priority level should be grouped.

150 BEYOND VoIP PROTOCOLS

6

5 4

4 4
2
© — Source S=2
B 3 — Source §=3
5 Source §=4
o3 Source S=5
7]

2 \

1 4

0 : . _

1 10 100 1,000 10,000

No. of streams

Figure 4.19 Sporadicity of aggregate streams.

4.4.4.1.1 Bandwidth management

In the previous section it was assumed that N streams were grouped. In reality, this number
would vary with time, and it would be difficult to adjust dynamically the bandwidth
reserved for this traffic class each time N changes. A possible heuristic for bandwidth
reservation could be some over-provisioning of bandwidth, which would be incremented
if the class uses more than 90% of the bandwidth or decremented if it uses less than 70%
(the threshold given here is arbitrary and should be derived from effective dispersion of
used bandwidth within the class). This hysteresis would reduce the number of bandwidth
reservation changes in the backbone for that class.

Using class-by-class WFQ with some bandwidth, over-provisioning is an acceptable
waste of bandwidth in most cases, since the unused reserved bandwidth is always available
for best effort traffic at any time. On most IP backbones, best effort packets represent the
vast majority of the traffic.

4.4.4.2 Using DiffServ with RSVP tunneling

The simplest way to simplify the provision of QoS in the backbone and avoid per-
flow state is to ignore RSVP completely, relying on the simpler DiffServ architecture.
DiffServ is an approach where all flows carried by the backbone are grouped in several
classes of service, eliminating most of the scalability issues encountered by per-flow QoS
provisioning. There are many ways to implement classes of service in the core:

e Using IP TOS/DS: internal routers can use class-by-class WFQ, where each class is
determined according to the precedence bits of IP packets.

QUALITY OF SERVICE 151

e Using layer 2 capabilities:
o Providers with an ATM backbone can open several virtual channels (VCs) between

concentration routers with several levels of QoS or simply use the ATM CLP (cell
loss priority) bit to define two rough classes of service.

o Providers with a frame relay backbone can open several VCs between border routers
with various levels of QoS parameters or use the DE (discard eligible) bit.

o Providers with MPLS (multiprotocol label switching) backbones can also define one
level of QoS for each label.

These techniques can be combined with congestion control mechanisms, such as RED or
WRED, to smooth TCP traffic and improve fairness between the flows within each class
of service.

We have seen that RSVP is an end-to-end protocol; so, RSVP messages need to be
passed between hosts across the backbone. This is not as simple as it seems. First, RSVP
messages must be ignored in the backbone, otherwise we would run into scalability issues.
Second, each RSVP packet is marked with a ‘router alert’ option in order to help routers
identify this packet as one needing special treatment (the router alert option should be
turned off, or ignored, when passing along the backbone). Some implementations (e.g.,
ISI) do not rely on the router alert option, but rather on interception of packets with
protocol 46. In this case it is also possible to use a new IP protocol number that only access
routers would recognize, or tunnel RSVP packets in an IP tunnel through the backbone.

Figure 4.20 shows a layered network architecture in which RSVP is used at the edge
for admission control and as a way for applications to declare data flow properties. Data
flows are then grouped into traffic classes. Core layer QoS mechanisms only consider
these traffic classes.

Edge router handles RSVP at
the edge and groups flows
into traffic classes for
transmission by the core layer

MPLS

MPLS
—— /Concentration layer:
E— TCP/IP with RSVP and

WFQ routers

Client network:
RSVP or proxy
RSVP

Core network
traffic is aggregated in a few
classes (e.g., using MPLS labels)

Figure 4.20 Scalable QoS using a layered architecture.

152 BEYOND VoIP PROTOCOLS

4.4.4.3 Handling of RSVP messages through the backbone

The RSVP and the DiffServ paradigms are based on opposite models: RSVP gives prece-
dence to a stream based on the receiver’s wishes, while DiffServ prioritization is controlled
by the sender.

In the layered model, an edge router sits between the DiffServ domain and the IntServ
(RSVP) domain. This edge router can modify the TOS/DS value of all packets injected
in the backbone and, therefore, has complete control over the priority of these packets. In
order to emulate receiver-based RSVP behavior, this router must decide which class of
service to use for a flow based on the QoS requirements contained in the RESV messages
(as shown in Figure 4.21). In this case, after analyzing the first RESV message, the edge
router decides that this session must be aggregated into the ‘medium’ class of service and
all the packet parts of this stream are marked accordingly.

4.4.4.3.1 PATH messages

For the end-user application, the network must behave as if it was RSVP-enabled end to
end. Therefore, the PATH messages generated by the sender must cross the backbone and
reach the receiver(s). Having received a PATH message describing a flow, the receiver
may choose to send back a RESV message in order to reserve resources for this flow in
the backbone.

However, if an implementation transmits PATH parameters transparently the receiver
will have a false view of the backbone, because the parameters within the PATH messages
will not have been updated to reflect latency and other characteristics of the backbone.

Access layer: Backbone: DiffServ Access layer:
RSVP RSVP

«—— Edgerouters —
N2 Nt

PATH message

PATH message

Data N

PATH message Premium

[~

x{

Medium Data
/

\(\\1 y\

Data
RESV message Premium / RESV message

RESV message

<=

Medium

Best effort

Premium
—/ Best effort

Data Data

SN DR

Figure 4.21 Handling an RSVP reservation through a DiffServ core.

QUALITY OF SERVICE 153

Therefore, the receiver might be misled, thinking the backbone adds less delay than it
actually does, and make a wrong reservation (in ‘guaranteed service’ mode).

If the backbone is built using powerful ‘gigarouters’, then each PATH message can be
updated at each hop. On the other hand, if the backbone is built using ATM or MPLS
technology, the PATH message needs to be updated only once by an edge router that
evaluates the overall transmission delay along the virtual circuit to the destination of that
stream, making the backbone appear as a single node for RSVP. A practical approach is to
propagate the value of the C parameter ‘as is’ and update only the D parameter. In other
words, we consider the queuing delay added by the backbone not to be very sensitive
to the characteristics of individual streams, but able to be approximated by an absolute
delay value that does not depend on the capacity reserved for the individual stream. This
approximation is generally valid if the number of aggregated streams is large. A single
stream has a negligible influence on backbone transit delay. Therefore, we update D
with a value representing the propagation delays and the average queuing delay through
the backbone.

4.4.4.3.2 RESV messages

If the backbone uses routers that have enough processing power to handle RESV messages
hop by hop, then each RESV message can be propagated normally through the backbone.
But, instead of creating a separate queue for the stream as in regular RSVP operation,
the router will direct that stream to the queue that is most appropriate for this type of
session and the required class of service (as discussed in Section 4.4.4.1). These routers
will maintain the bandwidth usage information for each class of service and eventually
decide to add more bandwidth for a particular class.

For most backbones, the edge router receiving a RESV message will simply tunnel this
RESYV message to the edge router used by that stream to enter the backbone. This router
will then be responsible for properly choosing the DiffServ DSCP field for packets of
this stream. The Diffserv codepoint will be used to choose a specific traffic class for the
backbone and may be mapped to layer two QoS mechanisms (e.g., in MPLS tags).

4.4.4.4 Caveats

With this layered approach, the ingress edge router will aggregate several flows over each
class of service. This will not have a significant impact on the QOS level experienced by
each individual flow except in some situations:

e When one of the flows does not conform to its TSPEC: if the provider has dimensioned
each virtual link between the ingress and egress routers for an aggregate of flows with
well-defined characteristics, one non-conformant flow may be enough to ruin the quality
of service experienced by all other flows on the same class.

e When very sporadic flows are merged with smooth flows (e.g., video with voice).

Therefore, the access router must have the ability to check the TSPEC of each flow
(and destroy or mark out-of-profile packets), and the service provider must avoid, when
defining the classes of service of the backbone, merging sporadic and smooth flows.

154 BEYOND VoIP PROTOCOLS

4.5 The CableLabs® PacketCable™ quality-of-service
specification: DQoS

Although simpler than the framework described in Section 4.4.4, the DQoS framework is
one of the most advanced examples of a layered network architecture providing tight per-
flow QoS control at the edge, while requiring only broad classes of service in the core
backbone. Compared with the RSVP tunneling method described above, DQoS differs
slightly by offering the option to terminate RSVP locally, in which case RSVP is used
only as a local admission control and service-level request protocol, and not for end-to-end
QoS provisioning.

4.5.1 What is DQoS?

Dynamic quality of service (DQoS) defines an architecture and a set of protocols to provide
assured quality of service in the access portion of a cable network. DQoS has been spec-
ified within the PacketCable™ project of the CableLabs® consortium. The specification
is publicly available on the PacketCable™ website (www.packetcable.com).

The access portion of a cable network is defined as the portion between the MTA and
the CMTS (Figure 4.22):

e The MTA (multimedia terminal adapter) is the component that generates multimedia
streams. It can be a PC, a stand-alone VoIP gateway for analog phones, an IP phone,

Cable network access portion

N SN oS
n.s-.s " -2

MTA +
Cable modem | Cable modem | |Cab|e modem |
| | | CMTS
~ 1
o>
MTA \I -'
MTA +
I_F ole modem | [Cable modem Cable modem
| | I CMTS
2
Stand-alone
MTA Embedded Stanc-alone
MTA

Figure 4.22 The PacketCable® ecosystem.

QUALITY OF SERVICE 155

etc. The MTA is connected to a cable modem (CM). If the MTA and the cable modem
are in the same device, it is called an ‘embedded MTA’, otherwise it is a ‘stand-alone
MTA’, which can be connected to the cable modem (e.g., using an Ethernet cable or a
USB cable).

e The CMTS (cable modem termination system) its responsible for collecting all data
streams from cable modems and routing the data either to an external IP network or
back to a cable modem. The CMTS is the only trusted entity of the access portion.

The MTAs are controlled by a call management server (CMS), using one of the two
call-signaling protocols defined by PacketCable™: NCS (network-based call signaling,
a variant of MGCP) or DCS (distributed call signaling, a variant of SIP). Today the
market is almost completely NCS. The CMS also sets the proper QoS authorizations
(gates) on the CMTS; this is the gate controller function in the DQoS framework.
Between the MTAs and the CMTS, two mechanisms may be used for QoS control:

e A layer 2 mechanism (DOCSIS 1.1 MAC), which is the only mandatory mechanism
in DOCSIS 1.1 and is only available for embedded MTAs.

e A layer 4 mechanism based on an extended version of RSVP, called RSVP+, which is
available both for embedded or stand-alone MTAs. In PacketCable™ versions after 1.0,
RSVP+ support is required for non-embedded MTAs and the CMTS. For embedded
MTAs, the RSVP+ or the MAC mechanism must be supported.

DQoS provides quality of service on a segment-per-segment basis; that is, on a call
from CMTSI1 to CMTS2, quality of service will be performed independently on the
CMTS1 DOCSIS segment and on the CMTS2 DOCSIS segment, possibly using different
mechanisms (MAC- or RSVP-based). Each service provider and each segment can select
its own preferred DQoS mechanisms. Optionally, the backbone segment between the two
CMTSs can also implement a QoS mechanism (IntServ or DiffServ), but the protocols
used at this level are not with in the scope of DQoS.

4.5.2 Session-per-session QoS reservation

DQoS allocates resources to the flow of data between two applications running on sepa-
rate endpoints. Bidirectional® data communication is called a session (Figure 4.23). The
QoS is provided individually to both the unidirectional upstream data flow and the unidi-
rectional downstream data flow within a session. The QoS is provided only to authorized
sessions, and for each session usage can be monitored: these accounting data enable
usage-based charging.

The term ‘dynamic’ is used because the QoS policy category of a user can change (e.g.,
‘gold’ to ‘bronze’) without resetting the cable modem. The QoS settings of a session can

2 This terminology is specific to DQoS. In the rest of the chapter the word ‘session’ refers to a
monodirectional data stream

156 BEYOND VoIP PROTOCOLS

Unidirectional downstream Unidirectional upstream
data flow data flow
\ \

3 -5

1

lececesas

.- S
| D ?/b Y Y Y
Video session j
Audio session
C Best effort data

Figure 4.23 Flows and sessions.

Nl)
- =2 O

change in the middle of a session. For instance, if there is a codec change from G729
to G711 for a fax, the MTA can dynamically commit more bandwidth if it had already
reserved enough capacity or can attempt to reserve more bandwidth if the reserved capac-
ity is not enough.

The CMTS allocates and schedules the bandwidth corresponding to each session reser-
vation, performing the role of the policy enforcement point (PEP, using the terminology
of the IETF Resource Allocation Protocol framework defined in RFC 2753). The CMTS
performs this function by implementing a DQoS Gate (a set of packet classification and
filtering functions, as described in Figure 4.24) for each session between the cable net-
work and the IP backbone or between MTAs on the cable network. Each CMS implements
a gate controller function that installs and controls gates on the CMTS: this is the pol-
icy decision point (PDP) in the IETF Resource Allocation Protocol framework. If a gate
is closed, then the traffic will either be dropped or forwarded in the best effort class,
depending on service provider policy.

The CMTS is responsible for providing the QoS requested by cable modems if allowed
to do so by the current policy, allocating the proper upstream capacity on the shared
medium. At layer 2 of the cable network, the CMTS uses the mechanisms defined in
DOCSIS 1.1 at the MAC level (not covered here) to implement the QoS policy. At the IP
level, the CMTS also verifies that IP streams sent by cable modems are properly shaped,
and verifies and eventually resets the DSCP of the IP packets it sends to the backbone.
In the other direction, the CMTS classifies the IP packets coming from the backbone
interface, applies traffic shaping, and DSCP marking before forwarding these packets on
the cable network.

QUALITY OF SERVICE 157

Gate ID

Accounting info: subscriber account number
State: allocated, authorized, reserved, commited

Session description
Session class (priority)

Authorized parameters: Bw, burst, jitter, classifiers
Reservation parameters: Bw, burst, jitter, classifiers: Resource 1D
Committed parameters: Bw, burst, jitter, classifiers

AT 1
< 2

Usage Token bucket Traffic filter for
counter shaping/policing upstream flow

7\

Authorized parameters: Bw, burst, jitter, classifiers
Reservation parameters: Bw, burst, jitter, classifiers: Resource ID
Committed parameters: Bw, burst, jitter, classifiers

I (zj N

Traffic filter for Token bucket Usage DSCP
downstream flow shaping/policing counter check/set

Bw = bandwidth

Figure 4.24 The DQoS ‘gate’.

The cable modem is responsible for implementing DOCSIS 1.1 QoS mechanisms to
request and obtain QoS on the cable network. It must also classify upstream IP packets
according to the filters declared to the CMTS and shape them properly according to the
declared token bucket parameters. Since the cable modem is not trusted, the CMTS will
double-check that the flow conforms to the profile declared in the gate for this session.

4.5.3 Two-phase reservation mechanism

Figure 4.24 shows that the gate can have several states:

e Allocated. The gate has been created at the initiative of the gate controller, but not yet
initialized with resource authorization parameters.

e Authorized. The gate controller has set the maximum level of resources (envelope) that
can be reserved within this gate. This restriction applies to any subsequent reservation
request. A gate controller can change an authorization for a given gate, but this only
applies to future reservation requests. Since it establishes gates and gate authorizations
in advance of a resource request, the gate controller can remain unaware of the state of
sessions in progress (stateless model). For voice traffic, a permanent gate is allocated
to signaling flows and a per-call gate is established for each call.

158 BEYOND VoIP PROTOCOLS

e Reserved. This state corresponds to admission, the first phase of the QoS reservation
mechanism. Reserved resources are available to best effort traffic until they commit-
ted, but they are removed from the pool of resources available for admission control.
Usually, the MTA is responsible for reserving resources. Reservation is soft state and
will expire unless it is refreshed. At the end of reservation, DOCSIS link service flows
are in ‘admitted state’.

e Committed. The gate is in committed state once an MTA has sent a confirmation that
the resource is being used. The gate is only open after reservation has been committed,
preventing fraud and theft of service. Excess reserved resources beyond committed
resources are released unless the MTA periodically refreshes the reservation (e.g., nec-
essary for calls on hold). At the end of the commit phase, DOCSIS link service flows
are in ‘active’ state and usage recording starts. In practice, the IP flows of a session
in ‘committed’ state use a WFQ-prioritized waiting queue, which ensures they will
receive a guaranteed level of service. If, however, the effective resource usage of these
streams remains below the committed capacity, then the scheduling algorithm of the
CMTS, if appropriately designed, will enable best effort traffic to use leftover capacity
(this is the case with PGPS scheduling, compare Section 4.3.3.2).

The binding between a reservation and a session is dynamic. For instance, for calls on
hold, a reservation will be used for the active call and the associated session switches to
the held call when it becomes active.

When reserving resources for a session, a session class is specified, allowing the CMTS
to keep resources for high-priority traffic (e.g., emergency calls). Session classes may be
overlapping (e.g., 50% is the maximum for normal calls and 70% for emergency calls)
and may be pre-emptive. The session class is communicated in the Gate-Set request of
the CMS to the CMTS together with the authorized session envelope.

The MTA is not forced to commit resources if there is a reservation or to reserve
resources that have been authorized. For instance, if port-to-port calls remain on the
same MTA (same IP address), IP packets are not forwarded on the cable network. This
situation could be recognized by the CMS, in which case the CMS sends a connection
request without a Gate-ID, indicating that the MTA must not reserve or commit resources.
But, in the most common case such a situation is not necessarily known at the beginning
of the call. If a Gate-ID was communicated to the MTA and the far end was still not
known, the MTA must tear down the service flow (reservation and/or commit) once the
port-to-port call is recognized.

4.5.3.1 Separate MTA and CM: the MTA to CMTS QoS protocol

The admission part of the QoS reservation two-phase process uses a superset of RSVP,
named RSVP+. The main difference is that, unlike RSVP, a PATH message from the cable
modem in RSVP+ requests resources in both directions (upstream and downstream), and
a RESV message from the CMTS confirms the reservation request has passed admission
control for both directions (Figure 4.25). In RSVP, the PATH message applies only to the
stream sent by the PATH sender.

QUALITY OF SERVICE 159

MTA Destination
S CM CMTS Intercepted CMTS D
PATH + — D by CMTS
© DOCSIS reservation Optional backbone reservation
[2]
©
= RESV + -8
[}
c
% Optional PATH = S Intercepted
i by CMTS

Optional RESV| —> D

COMMIT

COMMIT ACK

Commit
phase

== =m == == ||edia stream
Figure 4.25 Use of RSVP+.

The PATH message of RSVP+ is sent to the same destination as the data flow, as in
RSVP, but it is intercepted by the CMTS and therefore never reaches the destination. In
order to preserve compatibility with RSVP routers that may be present between the CM
and the MTA, the CMTS may also send a PATH message toward the MTA.

SDP information sent in the call control protocol from the CMS to the MTA contains
enough details to allow calculation of an RSVP flowspec for well-known codecs. For
other codecs, SDP can include explicit bandwidth information:

b:<modifier CT for Conference Total or AS for Application
Specific>:<bandwidth value including IP/UDP/RTP overhead>

RSVP+ exchanges also cause the CMTS to initiate DOCSIS MAC-level QoS reservation
with the cable modem.

The commit phase is performed by the MTA using a separate COMMIT UDP message
(not an RSVP message) sent to an address specified in the RSVP 4 RESV message. It is
acknowledged by a COMMIT ACK.

4.5.3.2 Embedded MTA: the optional MTA to CMTS protocol — the one
used in practice

An embedded MTA may use the MAC control service interface described in the DOCSIS
1.1 RFI specification, using DSx messages to reserve resources on the cable plant instead
of the RSVP+- interface. This mechanism cannot be used if the MTA and the cable modem

160 BEYOND VoIP PROTOCOLS

are separate entities. In practice, in all cable networks today the MTA and the CM are
integrated, in order to simplify the provisioning of telephony lines to customer premises
and to ensure that the service will be maintained for emergency calls using the batteries
of cable modem. RSVP+ then becomes useless, like the rest of the DQoS framework,
because the CM is considered, in practice, a trusted element of the network. Therefore,
contrary to what is sometimes heard, DQoS is not a prerequisite for the deployment of
telephony over cable networks. It is only required if the cable network operator wishes
to provide service to non-integrated MTAs over the end customer LAN. Unfortunately,
there are no—to our knowledge—non-integrated MTAs with support for RSVP+ on the
market. It seems the market for non-integrated MTAs is too small to justify developing
specific versions of analog VoIP gateways for cable networks. This is the reason the
DQoS framework remains mainly an interesting theoretical exercise, one that certainly
prefigures future developments for next generation broadband networks. But, in reality it
is of little use on current cable networks (except as an argument to sell next generation
CMTS systems).

4.5.4 CMS to CMTS communications

The CMS and CMTS communicate using the IETF Common Open Policy Service (COPS)
protocol.

4.5.4.1 The COPS protocol

COPS is defined in RFC 2778. It is designed to convey control communications between
one or more policy enforcement points (PEP) and a policy decision point (PDP). These
terms are defined by the IETF framework for policy-based admission control (RFC 2753):
a PEP is responsible for executing a security policy set by the PDP. PEPs filter and classify
IP packets, and may need to mark them with appropriate DSCP codes or to perform shap-
ing on the data streams. They can also accept or reject RSVP QoS requests. The COPS
protocol is not completely specified and needs to be profiled for any given application.
In the following sections we focus on the DQoS profile.

4.5.4.1.1 Generic COPS message format

The COPS protocol is based on messages that begin with a specific header and contain
multiple encapsulated objects (Figure 4.26). The C-Num octet identifies the type of object
from among the 16 types of objects used by COPS, while the C-Type octet identifies the
subtypes of a given object. The objects used by the PacketCable™ DQoS are indicated
in bold: in Table 4.2.

Most of the objects in Table 4.2 are placeholders for information which must be spec-
ified separately in a COPS profile. In the case of DQoS, a summary of the profile can be
found in Section 4.5.4.2.

QUALITY OF SERVICE 161

REQ Request

DEC Decision

RPT Report State

DRQ Delete Request State
SSQ Synchronize State Request
OPN Client Open

CAT Client Accept . —
CC Client Close Enterprise-specific value

Bit set to 1 for a
solicited message

KA Keep-Alive if this bit is set to 1
0 SSC Synchronize complete

“OONOOTRWN =

O0O0TO00O0XXXXXXXXX XXXXXXXX XXXXXXXX
COPS Version Flags | Op-code Client-Type

header XXXXXXXX XXXXXXXX XXXXXXXXXXXXXXXX
Message-Length
XXXXXXXX XXXXXXXX XXXXXXXX|XXXXXXXX
Obiject-Length | C-Num C-Type

Object 1 <
32-bit-aligned-object-content

Object n <

\

Figure 4.26 COPS message format.

4.5.4.1.2 Generic COPS operations

PEPs initially connect with a PDP using a TCP socket to port number 3288 and then
begin the COPS session by sending a Client-Open (OPN) message. The PDP can either
redirect the PEP to another PDP (Client-Close message with a <PDPredirAddr> object)
or accept the connection by sending a Client-Accept (CAT) message. The integrity of
the connection is then checked periodically using Keep-Alive (KA) messages, until the
connection is closed with a Client-Close message.

The PEP then sends Request (REQ) messages to the PDP, which installs a QoS-related
state (specified in the COPS profile) in the PDP. The PDP replies to each request with a
Decision (DEC) message. Each Request is identified by a client handle object, generated
by the PEP, which is copied in the PDP DEC message. This handle is associated with
the state installed by the request, and the PDP can send new DEC messages regarding
that state until the client handle is explicitly closed by the client (using a Delete Request
State, or DRQ, message). COPS messages are illustrated in Figure 4.27.

4.5.4.2 COPS profile for DQoS

The DQoS COPS profile is specified in sect. 5.2 of the DQoS specification. In DQoS, the
gate controller (PDP) initiates the COPS connection by establishing a TCP connection to
the IP address of the CMTS (port 2126). DQoS PEPs do not support PDP redirections in
Client-Close messages. The COPS Client-Type for a DQoS PEP is 0x8008.

162 BEYOND VoIP PROTOCOLS

Table 4.2 COPS specific objects

C-Num Object type C-Type and subtypes
1 Handle: unique value that identifies 1: Client handle
an installed state
2 Context: the type of event that 1: Request-Type/Message-Type
triggered a query
3 In interface: incoming interface on 1: IPv4 address + Interface
which a request applies 2: IPv6 address + Interface
4 Out interface: outgoing interface on 1: IPv4 address + Interface
which a request applies 2: IPv6 address + Interface
5 Reason code: reason for a delete 1
request message
6 Decision: decision made by a PDP 1: Decision flags
2: Stateless data
3: Replacement data
4: Client-specific decision data
5: Named decision data
7 LDPD decision: decision made by a Same as Decision
PEP-local PDP
8 Error: identifies a COPS protocol 1
error
9 Client-specific info (SI) 1: Signaled client SI
2: Named client SI
10 Keep-Alive timer 1: KA timer value
11 PEP identification 1:ASCII string
12 Report type 1
13 PDP redirect address 1: IPv4 address 4+ TCP port
2: IPv6 address + TCP port
14 Last PDP address 1: IPv4 address + TCP port
2: IPv6 address + TCP port
15 Accounting timer 1: value
16 Message integrity 1: HMAC digest

As shown in Figure 4.28, DQoS really uses COPS as a transport or tunneling protocol,
without really using its semantics: it uses a single COPS request and handle, and then
uses COPS DEC messages and RPT messages to exchange DQoS-level messages:

e From the GC to the CMTS: DQoS primitives are placed inside the Decision Object
(object C-Num 6, C-Type 4) of a COPS DEC message.

e From the CMTS to the GC: DQoS primitives are placed inside a Signaled Client SI
object (C-Num 9, C-Type 1) of a COPS RPT message.

The Context object in the COPS Decision message has the R-Type (Request Type Flag)
value set to 0x08 (Configuration Request) and the M-Type set to zero. The Command-
Code field in the mandatory Decision-Flags object (C-Num 6, C-Type 1) is set to 1 (Install
Configuration).

QUALITY OF SERVICE 163

EP COPS Request PDP

v

Header + Client Handle + Context
(optionally IN-int, OUT-int, n*ClientSI, n*LPDP Decision, Integrity)
COPS Decision

Header(solicited flag = 1) + Client Handle + Decisions (or Error)
(Decision = Context +
Dec_Flags|Stateless_Data|Replacement_Data|ClientSI_Data|Named_Data)

New request
establishes state
at PDP

A

COPS Report State

Success or failure
to execute PDP
decision

Header(solicited flag = 1) + Client Handle + Report-Type
(optionally n*ClientSlI, Integrity)

A 4

Header + Client Handle + Context
(optionally IN-int, OUT-int, n*ClientSI, n*LPDP Decision, Integrity)

COPS Decision

PEP can update
state at any time

A

Header(solicited flag = 1) + Client Handle + Decisions (or Error)
(optionally IN-int, OUT-int, n*ClientSI, n*LPDP Decision, Integrity)

COPS Decision
Header(solicited flag = 0) + Client Handle + Decisions (or Error)

PDP can change
a decision at any

A

time (Decision = Context +
Dec_Flags|Stateless_Data|Replacement_Data|ClientSI_Data|Named_Data)
COPS Delete Request State o
Request no >

Header + Client Handle + Context

| licabl
onger appiicable (optionally IN-int, OUT-int, n*ClientSI, n*LPDP Decision, Integrity)

|
{ COPS Request
|
{
{

Figure 4.27 PEP to PDP dialog.

4.5.4.2.1 DQoS commands

The following commands are defined by DQoS (encapsulated DQoS-specific subobjects
are shown in italic):

e GC-initiated messages to CMTS:

o <Gate-Alloc-Command>=<COPS Header> <Handle> <Context> <Decision-Fla-
gs><Decision-Header> <TransactionlD> <Subscriber-ID> [<Activity-Count>]|.
Gate-Alloc validates the number of simultaneous sessions allowed to be set up from the
originating MTA and allocates a Gate-ID to be used for all future messages regarding
this gate.

o <Gate-Set-Command>=<COPS Header> <Handle> <Context> <Decision-Fla-
gs><Decision-Header> <Transaction-ID> <Subscriber-1D> [<Activity-Count> |
[<Gate-ID>] [<Event-Generation-Info> J[<Electronic-Surveillance-Parameters> |

164

BEYOND VoIP PROTOCOLS

CMTS Gate controller
- <I'o TCP port 2126
Client-Open _
DQoS COPS
opening phase L Client-Accept

Request (Context, Handle h)

Decision messages (Handle h)

Active phase < Report State message (Handle h)

Figure 4.28 Opening a DQoS connection.

[<Session-Description-Parameters>] <Gate-Spec> [<Gate-Spec>]. Gate-Set ini-
tializes and modifies all the policy and traffic parameters for the gate or set of gates,
and sets the billing and gate co-ordination information.

<Gate-Info-Command>=<COPS Header><Handle> <Context> <Decision-FI-
ags> <Decision-Header> <Transaction-ID> <Gate-ID>. GATE-INFO is a mecha-
nism by which the gate controller can discover all the current state and parameter
settings of an existing gate or set of gates.

<Gate-Delete-Command >=<COPS Header> <Handle> <Context> <Decision-Fl-
ags> <Decision-Header> <Transaction-1D> <Gate-ID> <PacketCable-Reason>.
Gate-Delete allows a gate controller to delete a recently allocated gate under certain
circumstances.

e CMTS to GC responses:

(¢]

<Gate-Alloc-Ack-Response>=<COPS-Common-Header> <Handle> <Report-
Type> <ClientSI-Header> <Transaction-ID> <Subscriber-ID> <Gate-ID> <
Activity-Count>.

<Gate-Alloc-Err-Response >=<COPS-Common-Header> <Handle> <Report-
Type> <ClientSI-Header> <Transaction-ID> <Subscriber-ID> <PacketCable-
Error>.

<Gate-Set-Ack-Response>=<COPS-Common-Header> <Handle> <Report-
Type> <ClientSI-Header> <Transaction-ID> <Subscriber-ID> <Gate-ID> <
Activity-Count>.

<Gate-Set-Err-Response>=<COPS-Common-Header> <Handle> <Report-
Type> <ClientSI-Object>.

<Gate-Info-Ack-Response>=<COPS-Common-Header> <Handle> <Report-
Type> <ClientSI-Header> <Transaction-ID> <Subscriber-ID> <Gate-ID> [<

QUALITY OF SERVICE 165

Event-Generation-Info>][<Electronic-Surveillance-Parameters>] [<Session-Des-
cription-Parameters> |[<Gate-Spec >] [<Gate-Spec>].

o <Gate-Info-Err-Response>=<COPS-Common-Header> <Handle> <Report-
Type> <ClientSI-Header> <Transaction-ID> <Gate-ID > <PacketCable-Err>.

o <Gate-Delete-Ack-Response>=<COPS-Common-Header> <Handle> <Report-
Type> <ClientSI-Header> <Transaction-ID> <Gate-I1D >.

o <Gate-Delete-Err-Response>=<COPS-Common-Header> <Handle> <Report-
Type> <ClientSI-Header> <Transaction-ID > <Gate-ID > <PacketCable-Err >

e CMTS-initiated messages (use COPS to GC but Radius to remote CMTS) which can
also be GC-initiated (using COPS):

o <Gate-Open>=<COPS-Common-Header> <Handle> <Report-Type> < ClientSI-
Header> <Transaction-ID> <Gate-1D >.

o <Gate-Close>=<COPS-Common-Header> <Handle> <Report-Type> < ClientSI-
Header> <Transaction-1D> <Gate-ID > <PacketCable-Reason >. Gate-Open allows
the CMTS to inform the gate controller that gate resources have been committed.
Gate-Close allows the CMTS to inform the GC that the gate has been deleted due to
MTA interaction or inactivity. These messages provide a feedback path from CMTS
to CMS in order to allow for accurate call-state management at the CMS element.

4.5.4.2.2 DQoS subobjects

4.5.4.2.2.1 Transaction-ID The Transaction-ID is used by the gate controller to
match CMTS responses to previous GC requests.

Length = 8 S-Num =1 S-Type =1

2-octet Transaction-ID Gate Command Type

The following Gate Command Types are defined:

GATE-ALLOC 1
GATE-ALLOC-ACK 2
GATE-ALLOC-ERR 3
GATE-SET 4
GATE-SET-ACK 5
GATE-SET-ERR 6
GATE-INFO 7

166 BEYOND VoIP PROTOCOLS

GATE-INFO-ACK 8
GATE-INFO-ERR 9
GATE-DELETE 10

GATE-DELETE-ACK 11

GATE-DELETE-ERR 12

GATE-OPEN 13

GATE-CLOSE 14

4.5.4.2.2.2 Subscriber-ID This identifies the subscriber for this service request.

Length = 8 S-Num = 2 S-Type =1

IPv4 address (for IP-v6, use S-Type = 2)

4.5.4.2.2.3 Gate-ID This specifies the gate referenced in a command message or
assigned by the CMTS in a response message.

Length =8 S-Num =3 S-Type =1

Gate-ID

4.5.4.2.2.4 Activity count In a Gate-Alloc message, this represents the maximum
number of gates that can be allocated to a Subscriber-ID. In a Gate-Set-Ack or Gate-
Alloc-Ack, it indicates the number of gates assigned to a single subscriber.

Length = 8 S-Num =3 S-Type =1

32-bit counter

4.5.4.2.2.5 Gate-Spec The Gate-Spec object defines the filters that identify a flow,
the direction of the flow, and its token bucket parameters for authorization (the authoriza-
tion envelope). Filter values of zero (e.g., IP ID = 0) are wildcards (in this case the IP

QUALITY OF SERVICE 167

indicated in the header of the IP packet parts of the flow can be anything). Two Gate-Spec
objects must be used for a bidirectional session.

Length = 60 S-Num = 5 S-Type =1

0:Downstream/1:Upstream IP ID Flags Session-Class

Source IP address (32 bits)—O0 for wildcard

Destination IP address (32 bits)—O0 for wildcard

Source port—0 for wildcard Destination port—0 for wildcard

DiffServ DSCP

Timer T1 value—maximum authorization to commit time (in ms)

Timer T7 value—maximum duration of a single gate open state when a flow crosses

two CMTS (in ms)

Token Bucket Rate (r bytes/s)

Token Bucket Size (b bytes/s)

Peak Data Rate (p bytes/s)

Minimum Policed Unit, (i.e., smallest IP packet in the stream (m octets))

Maximum Packet Size (M bytes)

Rate (R bytes/s)

Slack Term, (i.e., acceptable delay on top of theoretical delay obtained for R = r (s))

The flag value 0x01 can be used to tell the CMTS to automatically commit the reserved
resources without waiting for an MTA command.

4.5.4.2.2.6 Event-Generation-Info This element is included if the CMS wants the
CMTS to generate accounting records.

Length = 44 S-Num = 7 S-Type = 4

Primary Record Keeping Server IP

Primary Record Keeping Server Port Flags

168

BEYOND VoIP PROTOCOLS

4.5.4.2.2.7 Electronic surveillance parameters

Secondary Record Keeping Server IP

Secondary Record Keeping Server Port

Flags

Billing Correlation ID (24 bytes)

This enables the CMS to ask the

CMTS to duplicate call-related events or even call media streams, and to send them
to an interception device.

Length = 20

S-Num = 10 S-Type =1

DEF-IP-Address-For-CDC (IP address where call events should be sent)

DF-Port-For-CDC

Flags: 1 = Send Events to CDC, 2 = Send Content to CCC

DF-IP-Address-For-CCC (IP address where call content should be sent)

DF-Port-For-CCC

4.5.4.3 Sample call flow

4.5.4.3.1 Embedded MTA, no use of Gate-Open messages

In this first sample call flow (Figure 4.29), the embedded MTAs use layer 2 (DOCSIS)
signaling for QoS reservations over the cable plant. The two CMSs use the DCS version of
SIP to communicate between them and the NCS version of MGCP to control the MTAs.

CMSo (originating) uses the Gate-Alloc message to retrieve a Gate-ID handle from the
CMTS. Subsequently, it passes this Gate-ID in all GC commands. The gate is initially in
ALLOCATED state.

Note the special use of SIP: the first INVITE does not cause the called phone to ring;
instead, CMSt (terminating) waits to receive an UPDATE message from CMSg. This call
flow makes sure that the destination phone does not ring if there are not enough resources

end to end:

e The 183 Progress provisional response is sent from CMSt to CMSg to indicate that
sufficient resources have been reserved on the terminating site (and that optionally one-
way backbone provisioning from the terminating side to the originating side if RSVP
is used in the backbone).

e The UPDATE message from CMSg indicates to CMSr that sufficient resources have
been reserved on the originating side (and that optionally one-way backbone provision-
ing from the originating side to the terminating side if RSVP is used in the backbone).

QUALITY OF SERVICE 169

MTA + CMg CMTS, CMSg cMsy CMTS; MTA + CM; Jﬁ

Off-Hook
CRCX (Inactive)
200 OK
Gate-Alloc
Gate-Alloc-Ack INVITE Gate-Set N
Gate-Set-Ack
CRCX (Inactive, |Reserve)
MAC QoSReservg
e Gate-Set 183 Progress < 200 OK
Gate-Set-Ack PRACK
MDCX (Inactive, Reserve)
M AC QoS Reservel
200 OK UPDATE RQNT (Ring) Ring
14200 OK (Update)
Ringback RQNT (Ringback) 180 Ringing 200 OK
200 OK o PRACK)
| NOTIFY Off-Hogk
MDCX (SendRé¢cv, Commit) 200 OK (Invite) | MDCX (SendRecy, Commit) o
AC QoS Commit Ack AC QoS Commj
200 OK > < 200 OK H
Active Call
NOTIFY On-Hook BYE RQNT FastBus
DLCX Ack DLCX
AC QoS Releasg| Gate-Info BYE Gate-Info AC Relea
Gate-Info-Err Ack Gate-Info-Ack
Gate-Delete
Gate-Delete-Ack

Figure 4.29 EMTA scenario.

In order to secure resources on the cable plant, the CMS first gives an Authorization to
the gate indicating certain filters and traffic properties in the Gate-Set message. The gate
transitions to AUTHORIZED state. The CMS then indicates to the MTA (via the call
control protocol) that the MTA should reserve these resources. MGCP NCS is extended
to support the indication of the target Gate-ID (L: dq-gi:<gate-ID>). Using the infor-
mation provided by the call control, the MTA then reserves the required resources via
the MAC-layer protocol and confirms successful reservation via the call control protocol
(MGCP 200 OK). If MAC-level reservation takes time, the MTA can send a provisional
‘100 277 PENDING’ response. If the reservation is successful, the gate transitions to
RESERVED state.

Once the resources are reserved, the MTA can be sure that a command to commit these
resources and begin to use them will not fail. The reserved gate state is soft state, so the
reservation should be refreshed if not used quickly. After a commit command from the
MTA, the gate is in COMMITTED state.

The CMS also gets involved in checking that the MTA closes the gate properly by
releasing resources at the end of the call. In case the MTA fails to do so (as shown
for MTAT), then the CMS Gate-Info command will succeed because the gate is still in
place. If this occurs, the CMS forces the CMTS to close the gate with a Gate-Delete
command.

170 BEYOND VoIP PROTOCOLS

4.5.4.3.2 Stand-alone MTA with RSVP+

If the MTA and the cable modem are physically separate, the MTA cannot use the DOCSIS
MAC layer to request resources: so a layer 4 protocol, based on RSVP, is used, which
triggers a MAC layer QoS reservation initiated by the CMTS. A sample call flow is
described in Figure 4.30.

On the cable plant, full duplex bandwidth is reserved after the first PATH/RESV
exchange, because of the extensions of RSVP+. However, the CMTS still sends a PATH
toward the MTA because the normal RSVP semantics apply between the cable modem
and the MTA; therefore, each PATH/RESV exchange between the CMTS and the MTA
only reserve one-way resources in the segment between the cable modem and the MTA.

4.6 Improving QoS in the best effort class

While it is easy to understand that a network provider will try to offer low loss rates and
low latency to its premium customers, one might wonder what he can do for its best effort
customers. This section describes how to improve fairness among best effort customers
(each customer must have an equal opportunity to use the capacity of the best effort class)
and how to prevent some issues that may occur with TCP.

MTA+CMg CMTSq CMSq CMSt CMTSt CMy MTAT
Off-Hook .

L CRCX (Inactive)
200 OK

+Gate-Alloc
Gate-Alloc-Ack| INVITE Gate-Set N

. Gate-Set-Ack |
CRCX (Inactive, Reserve)

PATH-+
AC QoS Resgrve
RESV+
PATH+
RESV+
. Gate-Set 183 Progress | 200 OK
Gate-Set-Ack] PRACK
4 MDCX (Inactive, Reserve)
MAC QoS Resgirve
200 OK UPDATE RQNT (Ring) Ring
1,200 OK (update)
. RQNT (Ringback) 180 Ringing | 200 OK
«Ringback 505 ok PRACK N

Figure 4.30 Stand-alone MTA scenario with RSVP+.

QUALITY OF SERVICE 171

4.6.1 Issues with UDP traffic

UDRP traffic has no standard rate-limiting feature in case of congestion. Properly written
applications should be able to detect network congestion and react by backing off the rate
of UDP traffic (e.g., all applications using RTP/RTCP can detect congestion when RTCP
reports increasing packet loss and higher latency). But, on the best effort class where
everyone pays a flat fee, it is very tempting to create a UDP application which has a
high redundancy scheme and which reacts to congestion not by reducing its bitrate, but
by increasing it with more redundant and forward error correction packets!

Unfortunately, it will work, because most best effort queues are handled in FIFO mode
and packets are dropped when the queue overflows. Statistically, the packets that remain
in the queue without being dropped represent a percentage of the offered traffic: so the
more you offer traffic to the node, the more packets you get through the node, as shown
in Figure 4.31. Such behavior will cause “honest” users to be gradually excluded from
the network, while greedy users will enjoy it all.

4.6.2 Issues with TCP traffic

4.6.2.1 TCP congestion avoidance and spontaneous synchronization

All modern TCP stacks implement congestion control algorithms developed by Van Jacob-
son, as specified in RFC 1122 (and updated in RFC 2001). These algorithms interpret
packet loss as an indication that the network is congested and react by slowing down the
rate at which TCP injects traffic in the backbone.

The Van Jacobson and Karels congestion control algorithm is one of the most popular.
It works by defining, in addition to the usual receiver window size (the maximum number

[
ONENEEEE OE EE EE
ONEEEEEE B OE EE
I o [I | N

At the application level

%D Global loss: 33%
. , [[‘Dark grey’ loss: 33%
Dark grey’ starts to Il
send redundant packets

5 o o
(0 o o o [B B @ @3

ONEEEEEE B @ 3 @3
DDDDDDDD' O 0O 0o 0o

At the application level

%D Global loss: 50%
EE [Dark grey’ loss: 0%
||

Figure 4.31 Greedy application pushing out other sessions.

172 BEYOND VoIP PROTOCOLS

Window size
— [.

—

Time

\

Figure 4.32 TCP window size backs off when packet loss is detected.

of bytes that the receiver is prepared to receive and not yet acknowledged), a congestion
window. The actual window size used during transmission is the minimum of the receiver
window size and the congestion window. Figure 4.32 shows the slow-start mechanism of
this algorithm, as well as the TCP stack reaction to packet loss. Congestion window size
begins with the size of one segment (512 or 536 bytes unless the other end requests a
different size) and gets one segment larger for each acknowledgement received without
loss. This exponential growth is characteristic of slow-start mode. If there is a timeout
while waiting for an ACK or if there are duplicate ACKs sent by the receiver,’ the
sender deduces that there is some congestion and sets a congestion avoidance threshold
to one-half of current window size. Then the sender sets the window size to one segment
and increases it in slow-start mode. Once the window size gets larger than the congestion
avoidance threshold, the sender increases the window size by (segment_size/window_size)
segments for each ACK, and the window size increases linearly with time.

3Modern TCP stacks (like the 4.3 BSD ‘Reno’ stack) implement a specific fast retransmit/fast
recovery procedure instead of going into slow start immediately when the receiver sends duplicate
ACKs (duplicate ACKs are sent when the receiver receives out-of-sequence packets).

QUALITY OF SERVICE 173

When a FIFO queue overflows, many active TCP sessions are very likely to lose an
IP packet Simultaneously. These sessions will back off (Figure 4.32) and hopefully the
congestion will disappear. Then all these TCP sessions will see that they no longer lose
packets and will increase their window size little by little . .. and after a while congestion
is back, packets are dropped, and all sessions back off again. This leads to an oscillation
of TCP traffic caused by synchronization of VJ algorithms after queue overflow.

4.6.3 Using ‘intelligent’ packet discard

In addition to the synchronization problem described above, TCP implementations that
incorporate congestion avoidance are network-friendly, while UDP programs or hacked
TCP stacks will continue to flood congested links. TCP stacks with congestion avoidance
will rapidly back off and progressively let the aggressive traffic use the complete capacity
of congested links. Fortunately, it is possible to improve the behavior of the network by
discarding packets ‘intelligently’.

Random early detection (RED) allows the backlog in routers to be kept as low as
possible, while avoiding TCP synchronization. A RED router starts dropping packets at
random before the FIFO buffer actually overflows, as shown in Figure 4.33. The session
that experiences packet loss should start to reduce its bitrate. Little by little more sessions
will experience some random packet loss and reduce the aggregate bitrate smoothly before
real congestion occurs. Without this policy, all sessions will experience some synchronized
packet loss and reduce their bitrate simultaneously when the buffer overflows, which may
cause undesired synchronization and possible oscillations.

With weighted RED (WRED), it is possible to go further and decide to increase packet
loss for a class of sessions. WRED can be used to do some basic prioritization (e.g.,
traffic in class ‘premium’ would experience packet loss only after class ‘medium’), but
more interestingly it enforces fairness. In Figure 4.31, it is relatively easy to identify the
greedy ‘blue’ stream as one getting more bandwidth than it should (e.g., by analyzing lost
packets). The normal behavior of a router is to lose packets of a given session propor-
tionally to the traffic offered by the session. We have seen that this actually encourages
the use of aggressive redundancy schemes. WRED introduces some nonlinearity (e.g., in
Figure 4.31 the router could decide to drop 80% of the ‘blue’ packets).

A

Loss

>

Average queue size

Figure 4.33 Probability of packet loss introduced by WRED according to transmission queue
size.

174 BEYOND VoIP PROTOCOLS

4.7 Issues with slow links

4.7.1 Queuing

Slow links are especially challenging for delay-sensitive applications. For instance, a
1,500-octet packet (a common size since it is the MTU over Ethernet) needs over 400 ms
to be transmitted over a 28.8-kbit/s PPP link. This would not be an issue if there was
only the delay-sensitive application on the link, because this application could use smaller
packets. Unfortunately, the line is often shared with other applications using larger packets,
such as a web browser, and urgent packets will be delayed if they are queued behind large
packets (see Figure 4.34).

4.7.2 Overhead

Another issue is that the overhead of the IP suite is quite high (e.g., in each packet of
a telephony or video application, IP uses 20 bytes, UDP uses 8 bytes, and RTP uses 12
bytes). The link-layer overhead is also significant: PPP and HDLC take an additional
4 bytes per packet on a modem link, a frame relay link will add 9 bytes per packet. Over
ATM the overhead depends on packet size: for an 80-byte packet (40 ms G.729) it adds
25 bytes (this overhead is called the ‘cell tax’).

To see how bad it is, consider what happens with IP phones using the G.723.1 coder.
The codec has an audio frame length of 30 ms. In 6.4-kbit/s mode (MP-MLQ), each frame
is 24 octets long. When the IP phone stacks only one frame per packet, each IP packet

Forwarding
Urgent RTP arrives process

just after large TCP packet Output queue
—RTPH HTTP I_@ '
—|

Slow modem
link

v

Forwarding
process

Output queue
J RP| HTTP |—

Slow modem

Urgent RTP has to wait until
TCP packet transmission is finished

link

Figure 4.34 Latency caused by large unfragmented packets.

QUALITY OF SERVICE 175

is 24 + 40 bytes long, and PPP + HDLC will make it 68 bytes long on the PPP link. A
packet is sent every 30 ms, and the resulting bitrate is over 18 kbits/s. So only one-third
of the bitrate is actual audio information from the G.732.1 codec!

In order to leave some room for data and video over 28.8-bit/s modems, applications
such as Microsoft NetMeeting® have to stack several frames per packet. A common
choice is to group 4 G.723.1 frames in one packet. This reduces the bitrate to 7.7 kbit/s,
but the packetization delay becomes 4 * 30 = 120 ms (128 ms including look-ahead). If
we assume the best case situation where this packet can be sent immediately, it will need
30 ms to get through the 28.8-bit/s modem link. This results in network delay and again
30 ms at the egress modem ... Unfortunately, this sets conversational delay to a level
that is unacceptable for most non-hobby users.

4.7.3 Overhead compression

The overhead issue can be solved by using header compression. Header compression is
based on a simple idea: since about half of the overhead of an IP/UDP/RTP packet is
constant for a given stream (e.g., the source and destination IP addresses and ports are
constant), it is therefore possible on a point-to-point link to negotiate a shorter ‘index’
for those constant values when the stream is set up. Moreover, some fields increment by
constant values and can be reconstructed at the receiving end if a proper per-stream state
is maintained.

Such an IP header compression algorithm has been standardized by M. Engan, S.
Casner, and C. Bormann in RFC 2509 ‘IP Header Compression over PPP’ (February
1999), and extended by S. Casner and V. Jacobson for applications using RTP in RFC
2508 ‘Compressing IP/UDP/RTP Headers for Low-speed Serial Links’ (February 1999).
This method is also called compressed RTP (CRTP) and can be negotiated as part of the
serial link protocol negotiation (e.g., as PPP options). More recently there was some work
to improve the tolerance of header compression to packet loss: an improved robust header
compression (ROHC) has been defined in RFC 3095 mainly for 3G networks. Most of
the time, the IP/UDP/RTP headers are compressed to just 2—4 bytes (2 bytes if the UDP
checksum is not used) instead of 40 for a full IP/UDP/RTP header. While compression can
be done end to end for RTP alone (preserving IP-addressing information), a compression
protocol for all three protocols (IP/UDP/RTP) can only work on a link-per-link basis
(IP-addressing information is not available in compressed packets).

With CRTP, the sending host replaces the large header with a small index to a session
context and differential values for variable fields. The receiving host reverses the opera-
tion. In each IPv4 header of a packet stream belonging to a given context (Figure 4.35),
only packet length, packet ID, and header checksum will change. The packet length indi-
cation is redundant with framing of the link layer and CRC is already provided by link
layer: both can be reconstructed. Packet ID changes by one or a small increment for each
packet, so only the increment value needs to be in the context. For UDP, the length field
is redundant. For RTP the SSRC value is constant for a context and the sequence number
is incremented by one unless packets are disordered. The RTP timestamp is incremented
by multiples of the frame size for audio (e.g., 2 if there are 2 codec frames in each RTP

176 BEYOND VoIP PROTOCOLS

Bits

‘ 1 1 2 2 2
0 |4 |8 |2 | 6 |0 |4 | 8
Version| IHL ' Type of service Packet length >

Q Identification ﬁ,ﬂgs Fragmentation offset

Time to live | Protocol f~___ Checksum D

—1

Source address

Header

Destination address

Options Padding
DATA ...

Figure 4.35 Very few fields change between IP packet parts of the same flow.

packet), and for video it will change for each first packet of a video frame description,
then remain constant for RTP packets containing the rest of the video frame description.
Only the increment size needs to be in the context. The RTP M bit will change each time
speech commences but would take too much overhead if compressed (e.g., there would
be a need to resynchronize context at each change).

In each CRTP packet, the context is identified by a session context identifier (CID) of
1 or 2 octets and a 4-bit serial number is added to detect packet loss on the link. Each host
can generate multiple RTP sessions and, therefore, a session context must be associated
with each group (source IP address, source port, destination IP address, destination port,
and RTP SSRC field). The link layer (e.g., PPP) also needs to convey an indication of
the format of the packet (no compression: FULL_HEADER; only IP + UDP header com-
pressed in 6 bytes or just 2 if UDP checksum is disabled: COMPRESSED UDP; IP +
UDP + RTP headers compressed, generally just 2 bytes in total: COMPRESSED_RTP;
and packet indicating that a context identifier is invalid: CONTEXT_STATE). A bit mask
indicates which fields differ from their prediction and, therefore, conveyed in differen-
tial form in the compressed packet. Any packet that cannot be predicted using one of
the compressed formats (unusual change) will be sent in FULL_HEADER format. The
context contains:

e Full IP/RTP/UDP headers, initialized with values found in the FULL_HEADER packet.

e Increment values of IP packet ID, RTP timestamp, initialized by comparing the values
of the first two transmitted stream packets (the increment value for the RTP sequence
number is implicitly set to one).

e Current 4-bit sequence number.

The CRTP compression scheme is optimized for duplex links and uses a backward
CONTEXT_STATE packet to signal a loss of synchronization between coder and decoder.
All transmitted packets are lost as long as CRTP contexts are not resynchronized.

The scheme works best with RTP packets, but since the compression scheme is able to
reconstruct the IP packet exactly (lossless), it will not cause any harm to a UDP packet

QUALITY OF SERVICE 177

improperly recognized as an RTP packet. A pair of routers using CRTP can therefore use
relatively simple pattern matching to recognize potential RTP packets, even if there is a
small probability that some non-RTP UDP packets will match by error. The routers need
to keep a cache of contexts (which get invalidated too frequently) in order to avoid using
RTP compression for these data streams.

It is interesting to note that IP and TCP header compression has also been introduced
in the UMTS standard for transport of IP packets over the UTRAN (Universal Terrestrial
Radio Access Network) radio link. The PDCP (Packet Data Convergence Protocol) layer
compresses [P headers using RFC 2507 (‘IP Header Compression’) and TCP/IP headers
using RFC 1144 (‘Compressing TCP/IP headers for Low-speed Serial Links’). Unfortu-
nately, RTP compression has not yet been defined for PDCP, but PDCP is extensible;
therefore, it is likely that RTP compression will also be supported one day, especially if
mixed-mode VoIP/WiFi and UMTS 3G terminals become more common.

4.7.4 Packet fragmentation, prioritization over serial links

The queuing issue can be solved by allowing real-time packets to pre-empt non-real time
packets. Two techniques can be used for pre-empting:

e Using the multilink PPP (PPP-MP) protocol (RFC 1990), also called link fragmen-
tation and interleaving (LFI). The original design of multilink PPP was to allow
the bundling of several physical or logical links into a single virtual link. Compared
with plain PPP, PPP-MP provides additional means to sequence and correlate frag-
ments arriving from several links. Since multilink PPP is able to fragments packets, it
can be used to stop transmission of a long packet, send an urgent packet, and resume
transmission of the long packet. Figure 4.36 shows the multilink PPP bitstream for-
mat, when the multilink short-sequence number fragment format is used (only 12 bits
instead of 24, and PPP compression of address, control, and most significant PID bytes
assumed active). This simple solution has the advantage of being compatible with exist-
ing PPP-MP implementations, but cannot be used for more than one pre-emption level.
This is because the PPP-MP specification requires the sequence numbers of fragments
of a packet to be monotonically increasing and contiguous.* Therefore the only way
to send an urgent packet between fragments is to send it without the PPP-MP header,

4 Extract from RFC 1990: “On each member link in a bundle, the sender MUST transmit fragments
with strictly increasing sequence numbers (modulo the size of the sequence space). This requirement
supports a strategy for the receiver to detect lost fragments based on comparing sequence numbers.
The sequence number is not reset upon each new PPP packet, and a sequence number is consumed
even for those fragments which contain an entire PPP packet, i.e., one in which both the (B)eginning
and (E)nding bits are set.”

An implementation must set the sequence number of the first fragment transmitted on a newly
constructed bundle to zero. (Joining a secondary link to an existing bundle is invisible to the
protocol, and an implementation must not reset the sequence number space in this situation).

The receiver keeps track of the incoming sequence numbers on each link in a bundle and
maintains the current minimum of the most recently received sequence number over all the member

178

BEYOND VoIP PROTOCOLS

PPP header | Address OxFF | Control 0x03 f'OXOO—OXSd is the Protocol ID
PID (H) 0x00 PID (L) 0x3d of multilink PPP
MP header [BEOO seq. Number N
Fragment data _Thg B and E bits indicate the
\Lbeglnmng and the end of each frame
PPP FCS
PPP header | Address OxFF | Control 0x03
PID (H) 0x00 | PID (L) 0x21 0x00-0x21 is the protocol ID of IP
uee RFC 1700, ‘Assigned Numbers’)
Urgent packet
PPP FCS
PPP header | Address OxFF | Control 0x03
PID (H) 0x00 | PID (L) 0x3d
MP header B‘E‘O‘O‘ seq. Number N + 1
Fragment data
PPP FCS
Figure 4.36 Insertion of an urgent packet in the PPP multiplex. Another limitation to using

PPP for QoS purposes is that it cannot be used on bundles of multiple serial links, as there
is no sequencing information for inserted priority packets, which therefore would not be kept
in sequence.

which is allowed by RFC 1990. An urgent packet interleaved between two fragments
of a long packet are shown in Figure 4.36 (HDLC 0x7E flags at the beginning and
end of each frame are not represented).

e RFC 2686, ‘The Multi-class Extension to Multi-link PPP’ (MCML), addresses this
limitation and makes it possible to manage a priority class over multiple serial links.
Delay-sensitive traffic (‘class 0°) is also fragmented just like pre-empted non-delay-
sensitive packets (‘class 1’). All sequence numbers are managed per class, resolving
the ambiguities that prevented doing the same on multilink PPP.

Both techniques should be used over links with relatively low packet loss and low round
trip delays, which is usually the case with access links. Some enhancements of ML-PPP
have been proposed to address these limitations, but they are not widely implemented.
ML-PPP and MCML are intended to be used on links with typically less than 2 Mbps of
bandwidth; for higher speed links the gain on delay is small and there may be excessive
impact on router CPU usage, especially for a service provider aggregation router if it has
to manage several customer serial links.

links in the bundle. The receiver detects the end of a packet when it receives a fragment bearing
the (E)nding bit. Reassembly of the packet is complete if all sequence numbers up to that fragment
have been received.

QUALITY OF SERVICE 179

4.8 Conclusion

Quality of service over packet networks is not a trivial issue, regardless of the technology.
There has been a lot of theoretical work lately, and a consensus on the deployment strategy
needed to build a large, QoS-aware, IP backbone is slowly emerging.

The main factor driving the latency aspect of quality of service is the length of the
data packet divided by the transmission link speed. Small packets are preferable because
they tend to introduce less latency: this is the background behind the advantage of using
native ATM for small to medium links, typically below 1 Mbit/s. However, small packets
also come with a big disadvantage: they create a lot of overhead (sometimes called the
‘cell tax’ in ATM); therefore, if the bandwidth is large enough, large packets become
preferable because they are more efficient.

From this point of view, IP is clearly the technology of the future. In most IP backbones,
bandwidth is already more than adequate to reduce packet size-related latency to some-
thing insignificant. The same is true within corporate LANs, with 10/100/1,000 Mbit/s
Ethernet links deployed massively. The last problematic bottleneck in many networks is
the local loop. Non-broadband techniques (ISDN, modem) require fragmentation tech-
niques to reduce link latency. Today, first-generation broadband techniques, such as cable
or ADSL, offer barely the bandwidth necessary to transmit IP packets without fragmen-
tation in the upstream direction (about 512 kbit/s to 1 Mbit/s maximum) and are often
restricted further by service providers. Second generation broadband techniques will offer
a more comfortable bandwidth: ADSL2 will offer 10 Mbit/s downstream and 1.2 Mbit/s
upstream,’ thus offering better support for IP-level quality of service over multiple parallel
transport channels.

ADSL2+ doubles the downstream bandwidth figure by doubling the occupied frequency
spectrum. For non-residential use requiring symmetric bandwidth, SDSL is already more
than adequate for transporting low-latency IP packets (Table 4.3).

The deployment of xDSL technologies is a very big success, but they will probably
increasingly compete with Ethernet as a first-mile technology, over a fiber to the building
infrastructure. These techniques are promoted by the Ethernet First Mile Association
(EFMA) and the Metro Ethernet Forum (MEF). Some cities already have a significant
coverage of fiber to the building infrastructure, e.g., Milan—Figure 4.37—with a 100,000
homes covered by a combination of fiber provision in the building and Ethernet to the
home. Optical fiber in the local loop will remove the last bottleneck for end-to-end quality
of service at 100 Mbps and over.

In this chapter, we focused on IPv4. There is sometimes the perception that IP will
be able to provide QoS only once IPv6 is deployed. This is clearly wrong. All impor-
tant QoS mechanisms present in IPv6 are also available in IPv4, and IPv4, given the
current state of access loop technology, creates much less overhead. With DiffServ and
the ever-improving layer 2 technologies, IPv4 is now ready for widespread deployment
of applications requiring quality of service, like VoIP. The last area where significant

50n average ADSL2 offers 50 kbit/s more bandwidth than ADSL, the 200-kbit increase of the
upstream channel is obtained by taking the bandwidth previously reserved for baseband voice ...
assuming voice over packet will be used!

180

BEYOND VoIP PROTOCOLS

Table 4.3 DSL performance table

Technique Downstream Upstream Max
(Mbps) (Mbps) bandwidth
distance
(km)
Assymetric ~ ADSL with ADSL/RADSL <8.2 <l 2.5
splitter ADSL2 (G.992.3/G.992.4) <12 <12 3
ADSL2+ (G.992.5) <26 <12 1.5
VDSL <26 <9 1
Splitterless UDSL/UADSL/RDSL/CDSL/ <15 <0.512 ~2
ADSL DSLlIite/ADSLIite/Glite
Symmetric ~ SDSL 1 twisted pair: <23 3
SDSL/SPDSL/HDSL(G.991.1)/
HDSL2 (ANSI T1418)
SHDSL (G.991.2) in single-pair <23 4
mode
Ethernet IEEE P.802. ah EFM copper 10 0.75
(EFMC) Metro Ethernet Forum
E-line, user network interface
IEEE P.802.ah EFM 100-1,000 ps 10
single-mode fiber (EFMF)
IEEE P.802.ah EFMP passive 1,000 20

optical network-shared fiber
with optical splitters

Figure 4.37 Fiber deployment in Milan (FastWeb).

QUALITY OF SERVICE 181

improvements are still desirable is access control, in order to secure IP backbones against
DoS attacks, which become more threatening as the bandwidth of end-user access links
increases. This seems to be where IntServ may have a much more pre-eminent role in
the future.

4.9 References

A.K. Parekh and R.G. Gallager. A generalized processor sharing approach to flow control in inte-
grated services networks, Part 1. IEEE/ACM Transactions on Networking, 1(3), pp. 344-357
(June 1993).

A.K. Parekh and R.G. Gallager. A generalized processor sharing approach to flow control in inte-
grated services networks, the multiple node case. IEEE/ACM Transactions on Networking, 2(2),
pp- 137-150 (April 1994).

S.J. Golestani. A Self-clocked Fair Queuing Scheme for Broadband Applications. Bellcore, ATT
Research Labs.

N.R. Figueira and J. Pasquale. An upper bound on delay for the virtual clock service discipline.
IEEE/ACM Transactions on Networking, 3(4) (August 1995).

V. Jacobson. Congestion avoidance and control. Proceedings of ACM SIGCOMM ’88, pp. 314-329
(August 1988).

S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance. I[EEE/ACM
Transactions on Networking, 1(4), pp. 397-413 (August 1993).

[RFC 1812] Requirements for IPv4 Routers (F. Baker).

[RFC 2205] Version 1 Functional Specification of RSVP.

[RFC 2211] Specification of the Controlled-load Network Element Service.

[RFC 2212] Specification of the Guaranteed Quality of Service.

[RFC 2474] Definition of the Differentiated Services Field in the IPv4 and IPv6 Headers.

[RFC 2475] An Architecture for Differentiated Services.

[RFC 1812] Requirements for IPv4 Routers.

[RFC 2508] Compressing IP/UDP/RTP Headers for Low Speed Serial Links (February 1999:
S. Casner, V. Jacobson).

[RFC 1990] The PPP Multilink Protocol (MP) (August 1996: K. Sklower, B. Lloyd, G. McGregor,
D. Carr, T. Coradetti).

[RFC 1661] The Point-to-Point Protocol (PPP) (July 1994: W. Simpson, editor).

[RFC 1662] PPP in HDLC-like Framing (July 1994: W. Simpson, editor).

